Preview

Russian Technological Journal

Advanced search

Kretschmann configuration as a method to enhance optical absorption in two-dimensional graphene-like semiconductors

https://doi.org/10.32362/2500-316X-2024-12-4-96-105

EDN: ZZDBRB

Abstract

Objectives. The optical properties of two-dimensional semiconductor materials, specifically monolayered transition metal dichalcogenides, present new horizons in the field of nano- and optoelectronics. However, their practical application is hindered by the issue of low light absorption. When working with such thin structures, it is essential to consider numerous complex factors, such as resonance and plasmonic effects which can influence absorption efficiency. The aim of this study is the optimization of light absorption in a two-dimensional semiconductor in the Kretschmann configuration for future use in optoelectronic devices, considering the aforementioned phenomena. Methods. A numerical modeling method was applied using the finite element method for solving Maxwell’s equations. A parametric analysis was conducted focusing on three parameters: angle of light incidence, metallic layer thickness, and semiconductor layer thickness.
Results. Parameters were identified at which the maximum area of absorption peak was observed, including the metallic layer thickness and angle of light incidence. Based on the resulting graphs, optimal parameters were determined, in order to achieve the highest absorption percentages in the two-dimensional semiconductor film.
Conclusions. Based on numerical studies, it can be asserted that the optimal parameters for maximum absorption in the monolayer film are: Ag thickness <20 nm and angle of light incidence between 55° and 85°. The maximum absorption in the two-dimensional film was found only to account for a portion of the total absorption of the entire structure. Thus, a customized approach to parameter selection is necessary, in order to achieve maximum efficiency in certain optoelectronic applications.

About the Authors

A. А. Guskov
MIREA – Russian Technological University
Russian Federation

Andrey A. Guskov, Research Intern, Department of Nanoelectronics, Institute for Advanced Technologies and Industrial Programming

78, Vernadskogo pr., Moscow, 119454

Scopus Author ID 57225969940, ResearcherID AAE-2479-2022



N. V. Bezvikonnyi
MIREA – Russian Technological University
Russian Federation

Nikita V. Bezvikonnyi, Research Intern, Department of Nanoelectronics, Institute for Advanced Technologies and Industrial Programming

78, Vernadskogo pr., Moscow, 119454



S. D. Lavrov
MIREA – Russian Technological University
Russian Federation

Sergey D. Lavrov, Cand. Sci. (Phys.-Math.), Associate Professor, Department of Nanoelectronics, Institute for Advanced Technologies and Industrial Programming

78, Vernadskogo pr., Moscow, 119454

Scopus Author ID 55453548100, ResearcherID G-2912-2016



References

1. Liu J.-T., Wang T.-B., Li X.-J., Liu N.-H. Enhanced Absorption of Monolayer MoS2 with Resonant Back Reflector. J. Appl. Phys. 2014;115:193511. https://doi.org/10.1063/1.4878700

2. Jeong H.Y., Kim U.J., Kim H., et al. Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry–Perot Interference and Plasmonic Excitation. ACS Nano. 2016;10(9):8192–8198. https://doi.org/10.1021/acsnano.6b03237

3. Huang X., Feng X., Chen L., Wang L., Tan W.C., Huang L., Ang K.-W. Fabry-Perot Cavity Enhanced Light-Matter Interactions in Two-Dimensional van Der Waals Heterostructure. Nano Energy. 2019;62:667–673. https://doi.org/10.1016/j.nanoen.2019.05.090

4. Kumari S., Dalal J., Kumar V., Kumar A., Ohlan A. Emerging Two-Dimensional Materials for Electromagnetic Interference Shielding Application. Int. J. Mol. Sci. 2023;24(15):12267. https://doi.org/10.3390/ijms241512267

5. Gorbatova A.V., Khusyainov D.I., Yachmenev A.E., Khabibullin R.A., Ponomarev D.S., Buryakov A.M., Mishina E.D. A Photoconductive THz Detector Based on a Superlattice Heterostructure with Plasmonic Amplification. Tech. Phys. Lett. 2020;46(11):1111–1115. https://doi.org/10.1134/S1063785020110218

6. Yu L., Liu D., Qi X.-Z., Xiong X., Feng L.-T., Li M., Guo G.-P., Guo G.-C., Ren X.-F. Gap Plasmon-Enhanced Photoluminescence of Monolayer MoS2 in Hybrid Nanostructure. Chinese Phys. B. 2018;27(4):047302. https://doi.org/10.1088/1674-1056/27/4/047302

7. Johnson A.D., Cheng F., Tsai Y., Shih C.K. Giant Enhancement of Defect-Bound Exciton Luminescence and Suppression of Band-Edge Luminescence in Monolayer WSe2-Ag Plasmonic Hybrid Structures. Nano Lett. 2017;17(7):4317–4322. https://doi.org/10.1021/acs.nanolett.7b01364

8. Butun S., Tongay S., Aydin K. Enhanced Light Emission from Large-Area Monolayer MoS2 Using Plasmonic Nanodisc Arrays. Nano Lett. 2015;15(4):2700–2704. https://doi.org/10.1021/acs.nanolett.5b00407

9. Su H., Wu S., Yang Y., Leng Q., Huang L., Fu J., Wang Q., Liu H., Zhou L. Surface Plasmon Polariton–Enhanced Photoluminescence of Monolayer MoS2 on Suspended Periodic Metallic Structures. Nanophotonics. 2020;10(2):975. https://doi.org/10.1515/nanoph-2020-0545

10. Miao J., Hu W., Jing Y., Luo W., Liao L., Pan A., Wu S., Cheng J., Chen X., Lu W. Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays. Small. 2015;11(20):2392–2398. https://doi.org/10.1002/smll.201403422

11. Xu H. Enhanced Light–Matter Interaction of a MoS2 Monolayer with a Gold Mirror Layer. RSC Adv. 2017;7(37): 23109–23113. https://doi.org/10.1039/C6RA27691A

12. Guo J., Li S., He Z., et al. Near-Infrared Photodetector Based on Few-Layer MoS2 with Sensitivity Enhanced by Localized Surface Plasmon Resonance. Appl. Surf. Sci. 2019;483:1037–1043. https://doi.org/10.1016%2Fj.apsusc.2019.04.044

13. Li Y., DiStefano J.G., Murthy A.A., Cain J.D., et. al. Superior Plasmonic Photodetectors Based on Au@MoS2 Core–Shell Heterostructures. ACS Nano. 2017;11(10):10321–10329. https://doi.org/10.1021/acsnano.7b05071

14. Kats M.A., Genevet P., Aoust G., et. al. Giant Birefringence in Optical Antenna Arrays with Widely Tailorable Optical Anisotropy. Proc. Natl. Acad. Sci. 2012;109(31):12364–12368. http://doi.org/10.1073/pnas.1210686109

15. Ross M.B., Blaber M.G., Schatz G.C. Using Nanoscale and Mesoscale Anisotropy to Engineer the Optical Response of Three-Dimensional Plasmonic Metamaterials. Nat. Commun. 2014;5(1):4090. https://doi.org/10.1038/ncomms5090

16. Li H.-J., Ren Y.-Z., Hu J.-G., Qin M., Wang L.-L. Wavelength-Selective Wide-Angle Light Absorption Enhancement in Monolayers of Transition-Metal Dichalcogenides. J. Light. Technol. 2018;36(16):3236–3241. https://doi.org/10.1109/JLT.2018.2840847

17. Bahauddin S.M., Robatjazi H., Thomann I. Broadband Absorption Engineering to Enhance Light Absorption in Monolayer MoS2. ACS Photonics. 2016;3(5):853–862. http://doi.org/10.1021/acsphotonics.6b00081

18. Ouyang Q., Zeng S., Dinh X.-Q., Coquet P., Yong K.-T. Sensitivity Enhancement of MoS2 Nanosheet Based Surface Plasmon Resonance Biosensor. Procedia Eng. 2016;140:134–139. https://doi.org/10.1016/j.proeng.2015.08.1114

19. Ouyang Q., Zeng S., Jiang L., et al. Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon NanostructureBased Surface Plasmon Resonance Biosensor. Sci. Rep. 2016;6(1):28190. https://doi.org/10.1038/srep28190

20. Oumekloul Z., Zeng S., Achaoui Y., Mir A., Akjouj A. Multi-Layer MoS2-Based Plasmonic Gold Nanowires at Near-Perfect Absorption for Energy Harvesting. Plasmonics. 2021;16(5):1613–1621. https://doi.org/10.1007/s11468-021-01405-w

21. Furchi M.M., Polyushkin D.K., Pospischil A., Mueller T. Mechanisms of Photoconductivity in Atomically Thin MoS2. Nano Lett. 2014;14(11):6165–6170. https://doi.org/10.1021/nl502339q

22. Di Bartolomeo A., Genovese L., Foller T., et al. Electrical Transport and Persistent Photoconductivity in Monolayer MoS2 Phototransistors. Nanotechnology. 2017;28(11):214002. https://doi.org/10.1088/1361-6528/aa6d98

23. Huang Y., Zhuge F., Hou J., et al. Van Der Waals Coupled Organic Molecules with Monolayer MoS2 for Fast Response Photodetectors with Gate-Tunable Responsivity. ACS Nano. 2018;12(4):4062–4073. https://doi.org/10.1021/acsnano.8b02380

24. Liu Y., Zhang H., Geng Y., et al. Long-Range Surface Plasmon Resonance Configuration for Enhancing SERS with an Adjustable Refractive Index Sample Buffer to Maintain the Symmetry Condition. ACS Omega. 2020;5(51):32951–32958. https://doi.org/10.1021/acsomega.0c03923

25. Borah R., Smets J., Ninakanti R., et al. Self-Assembled Ligand-Capped Plasmonic Au Nanoparticle Films in the Kretschmann Configuration for Sensing of Volatile Organic Compounds. ACS Appl. Nano Mater. 2022;5(8):11494–11505. http://doi.org/10.1021/acsanm.2c02524

26. Jamil N.A., Menon P.S., Said F.A., et al. Graphene-Based Surface Plasmon Resonance Urea Biosensor Using Kretschmann Configuration. In: 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM). IEEE; 2017. P. 112–115. https://doi.org/10.1109/RSM.2017.8069122

27. Shukla N., Chetri P., Boruah R., Gogoi A., Ahmed G.A. Surface Plasmon Resonance Biosensors Based on Kretschmann Configuration: Basic Instrumentation and Applications. In: Biswas R., Mazumder N. (Eds.). Recent Advances in Plasmonic Probes. Lecture Notes in Nanoscale Science and Technology. 2022. V. 33. P. 191–222. https://doi.org/10.1007/978-3-03099491-4_6

28. Rodrigues E.P., Lima A.M.N., Oliveira L.C., et al. Surface Plasmon Resonance Features of Corrugatec Copper and Gold Films: Grating Mode Operation with Wavelength Interrogation. In: 2017 2nd International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT). IEEE; 2017. https://doi.org/10.1109/INSCIT.2017.8103505

29. Maheswari P., Ravi V., Rajesh K.B., Rajan Jha. High Performance Bimetallic(Cu-Co) Surface Plasmon Resonance Sensor Using Hybrid Configuration of 2D Materials. J. Environ. Nanotechnol. 2022;11(3):01–10. https://doi.org/10.13074/jent.2022.09.223455

30. West P.R., Ishii S., Naik G.V., Emani N.K., Shalaev V.M., Boltasseva A. Searching for Better Plasmonic Materials. Laser Photon. Rev. 2010;4(6):795–808. https://doi.org/10.1002/lpor.200900055

31. Rycenga M., Cobley C.M., Zeng J., et al. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chem. Rev. 2011;111(6):3669–3712. https://doi.org/10.1021/cr100275d

32. Amendola V., Bakr O.M., Stellacci F. A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly. Plasmonics. 2010;5(1):85–97. http://doi.org/10.1007/s11468-009-9120-4

33. Rakić A.D., Djurišić A.B., Elazar J.M., Majewski M.L. Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices. Appl. Opt. 1998;37(22):5271. https://doi.org/10.1364/ao.37.005271

34. Gu H., Song B., Fang M., et al. Layer-Dependent Dielectric and Optical Properties of Centimeter-Scale 2D WSe2: Evolution from a Single Layer to Few Layers. Nanoscale. 2019;11(47):22762–22771. http://doi.org/10.1039/C9NR04270A

35. Leong H.-S., Guo J., Lindquist R.G., Liu Q.H. Surface Plasmon Resonance in Nanostructured Metal Films under the Kretschmann Configuration. J. Appl. Phys. 2009;106(12):124314–124314-5. http://doi.org/10.1063/1.3273359


Supplementary files

1. Diagram of the absorption dependence in transition metal dichalcogenides as a function of the silver layer thickness and the angle of light incidence
Subject
Type Исследовательские инструменты
View (298KB)    
Indexing metadata ▾
  • Parameters were identified at which the maximum area of absorption peak was observed, including the metallic layer thickness and angle of light incidence.
  • Based on numerical studies, it can be asserted that the optimal parameters for maximum absorption in the monolayer film are: Ag thickness <20 nm and angle of light incidence between 55° and 85°.
  • The maximum absorption in the two-dimensional film was found only to account for a portion of the total absorption of the entire structure.

Review

For citations:


Guskov A.А., Bezvikonnyi N.V., Lavrov S.D. Kretschmann configuration as a method to enhance optical absorption in two-dimensional graphene-like semiconductors. Russian Technological Journal. 2024;12(4):96–105. https://doi.org/10.32362/2500-316X-2024-12-4-96-105. EDN: ZZDBRB

Views: 362


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)