Preview

Russian Technological Journal

Advanced search

ON BEHAVIOR OF TRAJECTORIES OF WEAK SOLUTIONS OF N-DIMENSIONAL STOCHASTIC NAVIER-STOKES EQUATIONS

https://doi.org/10.32362/2500-316X-2017-5-3-151-159

Abstract

The research paper study a behavior of trajectories of weak solutions of n-dimensional (n≥2) Navier-Stokes equations, perturbed by an additive white noise. It is shown that at any given moment t trajectories in its subsequent motion along the phase space of the system: a) inevitably leave any bounded subset of the phase space; b) inevitably return to some compact set K, depending on the viscosity and on the external forces acting on the system. Thus, it is established that the trajectories alternately go away arbitrarily far from the mentioned set K, then again return to it, i.e. the recurrence of trajectories in relation to the set K and infinity. These results are obtained by estimating the mathematical expectation of the moments of the first exit of trajectory after t from the corresponding subsets of the phase space.

About the Author

D. A. Khrychev
Moscow Technological University (MIREA)
Russian Federation


References

1. Хасьминский Р.З. Устойчивость систем дифференциальных уравнений при случайных возмущениях их параметров. М.: Наука, 1969.

2. Crauel H. Measure attractors and Markov attractors // Dynamical Systems. 2008. V. 23. № 1. P.75-107.

3. Liu K., Truman A. Lyapunov function approaches and asymptotic stability of stochastic evolution equations in Hilbert spaces / In: Stoch. Partial Diff. Eq. Appl. NY.: Dekker, 2002. P. 337-371.

4. Schmalfuβ B. Measure attractors of the stochastic Navier-Stokes equation. Bremen Report No. 258. 1991.

5. Crauel H., Flandoli F. Attractors for random dynamical systems // Probab. Theory Relat. Fields. 1994. V. 100. № 3. P. 365-393.

6. Marin-Rubio P., Robinson J.C. Attractors for the stochastic 3D Navier-Stokes equations // Stochastics and Dynamics. 2003. V. 3. № 3. P. 279-297.

7. Cutland N.J., Keisler H.J. Global attractors for 3-dimensional stochastic Navier-Stokes equations // J. Dynam. Diff. Eq. 2004. V. 16. № 1. P. 205-266.

8. Вишик М.И., Комеч А.И., Фурсиков А.В. Некоторые математические задачи статистической гидромеханики // Успехи матем. наук. 1979. Т. 34. Вып. 5 (209). С . 135-210.

9. Viot M. Solutions faibles d’equations aux derives partielles stochastiques non lineaires. Paris. These. 1976.

10. Вентцель А.Д. Курс теории случайных процессов. М.: Наука, 1996.

11. Бурбаки Н. Интегрирование. Меры на локально компактных пространствах. Продолжение меры. Интегрирование мер. Меры на отделимых пространствах. М.: Наука, 1977.


Review

For citations:


Khrychev D.A. ON BEHAVIOR OF TRAJECTORIES OF WEAK SOLUTIONS OF N-DIMENSIONAL STOCHASTIC NAVIER-STOKES EQUATIONS. Russian Technological Journal. 2017;5(3):151-159. (In Russ.) https://doi.org/10.32362/2500-316X-2017-5-3-151-159

Views: 344


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)