Effect of surface electromagnetic wave treatment on the refractive properties of thin films based on indium tin oxides with laser-deposited single-walled carbon nanotubes
https://doi.org/10.32362/2500-316X-2024-12-5-50–62
EDN: LYYDJX
Abstract
Objectives. The article investigates the effect of surface electromagnetic wave (SEW) treatment on the refractive properties of thin conducting films based on indium tin oxide (ITO) with laser-deposited single-walled carbon nanotubes (CNTs). The effective thickness of the layer of laser-deposited CNTs before and after SEW treatment is evaluated.
Methods. A laser-oriented deposition method employing a CO2 laser (λ = 10.6 µm) was used to form the structures. Diagnostics of modifications of ITO thin films were carried out using an ellipsometer operating in the spectral range of 300–1000 nm. The Cauchy model was used to describe the optical properties of K8 crown substrates and ITO thin films. To interpret the ellipsometry results of ITO modifications with CNTs, an effective-thickness virtual layer model was introduced. During post-processing of the surface, a CO2 marker (λ = 10.6 µm) was used to generate SEW. The influence of SEW treatment on the thickness of the virtual layer was assessed using ellipsometry and atomic force microscopy in contact mode.
Results. Based on the ellipsometry data, the effective thickness of the CNT layer was in the range of 24–26 nm. Following SEW treatment, the thickness of the effective CNT layer decreased to 4–8 nm, indicating the possibility of precision processing of the ITO surface with CNTs using SEW. When CNTs are deposited on an ITO surface with subsequent SEW treatment of the surface, reflection losses for p-polarized radiation are reduced. In a spectral range of 400–750 nm at an angle of incidence relative to the normal to the plane of structures α = 65°, a decrease in reflection is observed from 18.5% to 13.5% relative to ITO without CNTs and SEV treatment; at α = 71°, a decrease from 6.4% to 4.7% is observed; at α = 77°, a decrease from 1.8% to 1.2%.
Conclusions. For ITO-based thin films with laser-deposited CNTs, the described SEW treatment method provides a precise reduction in the thickness of the composite structure while preserving the antireflective properties of the CNTs. These capabilities make it possible to use the studied ITO modifications in solving problems in optical electronics, microfluidics, and biomedicine.
Keywords
About the Authors
A. S. ToikkaRussian Federation
Andrei S. Toikka, Postgraduate Student, Photonics Department; Junior Researcher, Advanced Development Division
5, ul. Professora Popova, St. Petersburg, 197022
1, Orlova Roshcha, Gatchina, Leningradskaya oblast, 188300
Scopus Author ID 57216272706
N. V. Kamanina
Russian Federation
Natalia V. Kamanina, Dr. Sci. (Phys.-Math.), Head of the Laboratory of Photophysics of Nanostructured Materials and Devices; Head of the Laboratory of Photophysics of Media with Nanoobjects; Professor, Photonics Department; Lead Researcher of Advanced Development Division
5, ul. Professora Popova, St. Petersburg, 197022
1, Orlova Roshcha, Gatchina, Leningradskaya oblast, 188300
36, Babushkina ul., St. Petersburg, 192171
5, Kadetskaya Liniya V.O., St. Petersburg, 199053
Scopus Author ID 55980751700
References
1. Kim H., Gilmore C.M., Piquie A., Horwitz J.S., Mattoussi H., Murata H., Kafafi Z.H., Chrisey D.B. Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys. 1999;86(11): 6451–6461. https://doi.org/10.1063/1.371708
2. Adurodija F.O., Izumi H., Ishihara T., Yoshioka H., Motoyama M., Murai K. Influence of substrate temperature on the properties of indium oxide thin films. J. Vac. Sci. Technol. A. 2000;18:814–818. https://doi.org/10.1116/1.582260
3. Zhang K., Zhu F., Huan C.H.A., Wee T.S. Effect of hydrogen partial pressure on optoelectronic properties of indium tin oxide thin films deposited by radio frequency magnetron sputtering method. J. Appl. Phys. 1999:86(2):974–980. https://doi.org/10.1063/1.370834
4. Kerkache L., Layadi A., Mosser A. Effect of oxygen partial pressure on the structural and optical properties of dc sputtered ITO thin films. J. Alloys Compd. 2019;18(1):46–50. https://doi.org/10.1016/j.jallcom.2009.06.103
5. Kim J.-H., Lee J.-H., Heo Y.-W., Kim J.-J., Park J.-O. Effects of oxygen partial pressure on the preferential orientation and surface morphology of ITO films grown by RF magnetron sputtering. J. Electroceram. 2009;23:169–174. https://doi.org/10.1007/s10832-007-9351-8
6. Yang S., Sun B., Liu Y., Zhu J., Song J., Hao Z., Zeng X., Zhao X., Shu Y., Chen J., Yi J., He J. Effect of ITO target crystallinity on the properties of sputtering deposited ITO films. Ceram. Int. 2020;46(5):6342–6350. https://doi.org/10.1016/j.ceramint.2019.11.110
7. Chen Y., Du C., Sun L., Fu T., Zhang R., Rong W., Cao S., Li X., Shen H., Shi D. Improved optical properties of perovskite solar cells by introducing Ag nanoparticles and ITO AR layers. Sci. Rep. 2011;11:14550 https://doi.org/10.1038/s41598-021-93914-1
8. Chu F., Wang D., Liu C., Li L., Wang W.H. Multi-View 2D/3D Switchable Display with Cylindrical Liquid Crystal Lens Array. Crystals. 2021;11(6):715. https://doi.org/10.3390/cryst11060715
9. Rasheed M., Barille R. Optical constants of DC sputtering derived ITO, TiO2 and TiO2:Nb thin films characterized by spectrophotometry and spectroscopic ellipsometry for optoelectronic devices. J. Non. Cryst. Solids. 2017;476:1–14. https://doi.org/10.1016/j.jnoncrysol.2017.04.027
10. Losego M.D., Efremenko A.Y., Rhodes C.L., Cerruti M.G., Franzen S., Maria J.P. Conductive oxide thin films: Model systems for understanding and controlling surface plasmon resonance. J. Appl. Phys. 2009;106(2):024903. https://doi.org/10.1063/1.3174440
11. Amin R., Maiti R., Gui Y., Suer C., Miscuglio M., Heidari E., Khurgin J.B., Chen R.T., Dalir H., Sorger V.J. Heterogeneously integrated ITO plasmonic Mach–Zehnder interferometric modulator on SOI. Sci. Rep. 2021;11:1287. https://doi.org/10.1038/s41598-020-80381-3
12. Dong W.J., Yu H.K., Lee J.L. Abnormal dewetting of Ag layer on three-dimensional ITO branches to form spatial plasmonic nanoparticles for organic solar cells. Sci. Rep. 2020;10:12819. https://doi.org/10.1038/s41598-020-69320-4
13. Liu C., Wang J., Wang F., Su W., Yang L., Lv J., Fu G., Li X., Liu Q., Sun T., Chu P.K. Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings. Opt. Commun. 2020;464:125496. https://doi.org/10.1016/j.optcom.2020.125496
14. El Nahrawy A.M., Abou Hammad A.B., Youssef A.M., Mansour A.M., Othman A.M. Thermal, dielectric and antimicrobial properties of polystyrene-assisted/ITO:Cu nanocomposites. Appl. Phys. A. 2019;125:46. https://doi.org/10.1007/s00339018-2351-5
15. Mei F., Huang J., Yuan T., Li R. Effect of cerium doping on the microstructure and photoelectric properties of Ce-doped ITO films. Appl. Surf. Sci. 2020;509:144810. https://doi.org/10.1016/j.apsusc.2019.144810
16. Taha H., Jiang Z.T., Yin C.Y., Henry D.J., Zhao X., Trotter G., Amri A. A Novel Approach for Fabricating Transparent and Conducting SWCNTs/ITO Thin Films for Optoelectronic Applications. J. Phys. Chem. C. 2018;122(5):3014–3027. https://doi.org/10.1021/acs.jpcc.7b10977
17. Kamanina N.V., Vasil’ev P.Ya., Studeonov V.I., Usanov Yu.E. Strengthening transparent conductive coatings and “soft” materials of the IR range when nanotechnologies are used. J. Opt. Technol. 2008;75(1):67–68. https://doi.org/10.1364/JOT.75.000067 ] [Original Russian Text: Kamanina N.V., Vasil’ev P.Ya., Studeonov V.I., Usanov Yu.E. Strengthening transparent conductive coatings and “soft” materials of the IR range when nanotechnologies are used. Opticheskii zhurnal. 2008;75(1):83–84 (in Russ.).]
18. Kamanina N., Toikka A., Gladysheva I. ITO conducting coatings properties improvement via nanotechnology approach. Nano Express. 2021;2(1):010006. https://doi.org/10.1088/2632-959X/abd90c
19. Kamanina N., Toikka A., Valeev B., Kvashnin D. Carbon Nanotubes Use for the Semiconductors ZnSe and ZnS Material Surface Modification via the Laser-Oriented Deposition Technique. C – Journal of Carbon Research. 2021;7(4):84. https://doi.org/10.3390/c7040084
20. Garcia-Caurel E., De Martino A., Gaston J.P., Yan L. Application of Spectroscopic Ellipsometry and Mueller Ellipsometry to Optical Characterization. Appl. Spectroscopy. 2013;67(1):1–21. https://doi.org/10.1366/12-06883
21. Fujiwara H. Spectroscopic Ellipsometry. The Atrium, Chichester, West Sussex, England: John Wiley & Songs; 2007. 369 p.
22. König T.A.F., Ledin P.A., Kerszulis J., Mahmoud M.A., El-Sayed M.A., Reynolds J.R., Tsukruk V.V. Electrically Tunable Plasmonic Behavior of Nanocube–Polymer Nanomaterials Induced by a Redox-Active Electrochromic Polymer. ACS Nano. 2014;8(6):6182–6192. https://doi.org/10.1021/nn501601e
23. Ermolaev G.A., Tsapenko A.P., Volkov V.S., Anisimov A.S., Gladush Y.G., Nasibulin A.G. Express determination of thickness and dielectric function of single-walled carbon nanotube films. Appl. Phys. Lett. 2020;116:231103. https://doi.org/10.1063/5.0012933
24. Toikka A.S., Fedorova L.O., Kamanina N.V. Influence of laser-deposited carbon-containing nanoparticles on the orienting properties of indium-tin-oxide-based conducting layers for liquid crystal devices. J. Opt. Technol. 2024;91(1):55–60. https://doi.org/10.1364/JOT.91.000055 ] [Original Russian Text: Toikka A.S., Fedorova L.O., Kamanina N.V. Influence of laser-deposited carbon-containing nanoparticles on the orienting properties of indium-tin-oxide-based conducting layers for liquid crystal devices. Opticheskii zhurnal. 2024;91(1):91–100 (in Russ.).]
25. Bonch-Bruevich A.M., Libenson M.N., Makin V.S., Trubaev V.V. Surface electromagnetic waves in optics. Opt. Eng. 1992;31(4):718–730. https://doi.org/10.1117/12.56133
26. Toikka A.S., Kamanina N.V. Formation of the anisotropic ITO-based orienting layers for the liquid crystal devices. St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2023;16(3.2):244–248. https://doi.org/10.18721/JPM.163.242
Supplementary files
|
1. Atomic force microscopy profile of ITO surface in the area of SEW treatment | |
Subject | ||
Type | Исследовательские инструменты | |
View
(67KB)
|
Indexing metadata ▾ |
- The article investigates the effect of surface electromagnetic wave (SEW) treatment on the refractive properties of thin conducting films based on indium tin oxide (ITO) with laser-deposited single-walled carbon nanotubes (CNTs). The effective thickness of the layer of laser-deposited CNTs before and after SEW treatment is evaluated.
- For ITO-based thin films with laser-deposited CNTs, the described SEW treatment method provides a precise reduction in the thickness of the composite structure while preserving the antireflective properties of the CNTs.
- These capabilities make it possible to use the studied ITO modifications in solving problems in optical electronics, microfluidics, and biomedicine.
Review
For citations:
Toikka A.S., Kamanina N.V. Effect of surface electromagnetic wave treatment on the refractive properties of thin films based on indium tin oxides with laser-deposited single-walled carbon nanotubes. Russian Technological Journal. 2024;12(5):50–62. https://doi.org/10.32362/2500-316X-2024-12-5-50–62. EDN: LYYDJX