Modeling of the magnetorefractive effect in Co-Al2O3 nanocomposites in the framework of the Bruggeman approximation
https://doi.org/10.32362/2500-316X-2024-12-3-55-64
EDN: SWVVUI
Abstract
Objectives. To investigate the magnetorefractive effect (MRE) in nanocomposites, which consists in changing the reflection, transmittance and light absorption coefficients of samples with large magnetoresistance (MR) upon their magnetization. Materials offering high magneto-optical activity and significant MR include magnetic nanocomposites. These materials are based on a polymer matrix, which includes inorganic magnetic particles, fibers or layered particles, whose nanometer sizes range from 1 to 100 nm in at least one dimension. The main purpose of creating such nanocomposites is to combine the special properties of several components in one material. The presence in such materials of gigantic, colossal and tunneling MR, as well as the giant anomalous Hall effect, is of practical interest. Uses range from magnetic recording, light modulation, and receivers for thermal radiation, while the MRE itself is a promising method for the non-destructive testing of any nanostructures, e.g., measuring MR.
Methods. The use of effective medium theory to describe the optics and magneto-optics of dispersed media provides a means to determine the complex permittivity of a medium through the permittivity of its constituent components or vice versa. The present work considers the example of a Co-Al2O3 nanocomposite with a concentration of ferromagnetic metal Co 0.4 near the percolation threshold. This particular case was considered for study, since all the properties of nanocomposites change dramatically near the percolation threshold.
Results. Using the Bruggeman effective medium approximation (EMA) to describe the optical and magneto-optical properties of nanocomposites on the example of Co-Al2O3, the characteristics of MRE are obtained, namely, the change in MRE for reflection and transmission of light at normal incidence and at the angle of incidence near the Brewster angle (below the percolation threshold) or the main angle of incidence for metals (above the percolation threshold), which enhances MRE. The advantage of the EMA is the ability to study magneto-optical spectra in the range of average volume concentrations of the metal component.
Conclusions. The obtained values correspond well to the known experimental data. Moreover, the described approach can be used to study any nanostructures.
Keywords
About the Authors
M. A. MukhutdinovaRussian Federation
Muza A. Mukhutdinova, Student, Institute for Advanced Technologies and Industrial Programming
78, Vernadskogo pr., Moscow, 119454
Competing Interests:
Авторы заявляют об отсутствии конфликта интересов.
A. N. Yurasov
Russian Federation
Alexey N. Yurasov, Dr. Sci. (Phys.-Math.), Professor, Department of Nanoelectronics, Institute for Advanced Technologies and Industrial Programming
78, Vernadskogo pr., Moscow, 119454
ResearcherID M-3113-2016, Scopus Authors ID 6602974416
Competing Interests:
Авторы заявляют об отсутствии конфликта интересов.
References
1. Yurasov A.N. Magnetorefractive effect in nanostructures. Pribory = Instruments. 2022;4(262):22–25 (in Russ.).
2. Yurasov A.N. Magnitoopticheskie effekty i magnitorefraktivnyi effekt v nanokompozitakh (Magneto-Optical Effects and Magnetorefractive Effect in Nanocomposites). Moscow: MIREA; 2016. 55 p. (in Russ.).
3. Krinchik G.S., Artem’ev V.A. Magneto-optical properties of Ni, Co and Fe in the ultraviolet visible and infrared parts of the spectrum. Journal of Experimental and Theoretical Physics (JETF). 1968;26(6):1080–1085. [Original Russian Text: Krinchik G.S., Artem’ev V.A. Magneto-optical properties of Ni, Co and Fe in the ultraviolet visible and infrared parts of the spectrum. Zhurnal Eksperimental’noi i Teorieticheskoi Fiziki. 1967;53(6):1901–1912 (in Russ.).]
4. Niklasson G.A., Granqvist C.G. Optical properties and solar selectivity of coevaporated CoAl2O3 composite films. J. Appl. Phys. 1984;55(9):3382–3410. https://doi.org/10.1063/1.333386
5. Bykov I.V., Gan’shina E.A., Granovskii A.B., et al. Magnetorefractive effect in granular films with tunneling magnetoresistance. Phys. Solid State. 2000;42(3):498–502. https://doi.org/10.1134/1.1131238 [Original Russian Text: Bykov I.V., Gan’shina E.A., Granovskii A.B., Gushchin B.C. Magnetorefractive effect in granular films with tunneling magnetoresistance. Fizika tverdogo tela. 2000;42(3):487–491 (in Russ.).]
6. Gushchin B.C., Gan’shina E.A., Kozlov A.A., Bykov I.V. Magnetorefractive effect in nanocomposites. Moscow University Physics Bulletin. 2005;60(1):57–75. [Original Russian Text: Gushchin B.C., Gan’shina E.A., Kozlov A.A., Bykov I.V. Magnetorefractive effect in nanocomposites. Vestnik Moskovskogo universiteta. Seriya 3. Fizika. Astronomiya. 2005;1:45–58 (in Russ.).]
7. Yurasov A., Yashin M., Ganshina E., Granovsky A., Garshin V., Semenova D., Mirzokulov K. Simulation of magneto-optical properties of nanocomposites (CoFeZr)x(Al2O3)(1−x). J. Phys.: Conf. Ser. 2019;1389(1):012113. http://doi.org/10.1088/17426596/1389/1/012113
8. Apresyan L.A., Vlasova T.V., Krasovskii V.I., et al. Effective Medium Approximations for the Description of Multicomponent Composites. Tech. Phys. 2020;65(7):1130–1138. https://doi.org/10.1134/S106378422007004X [Original Russian Text: Apresyan L.A., Vlasova T.V., Krasovskii V.I., Kryshtob V.I., Rasmagin S.I. Effective Medium Approximations for the Description of Multicomponent Composites. Zhurnal tekhnicheskoi fiziki. 2020;90(7):1175–1183 (in Russ.). https://doi.org/10.21883/JTF.2020.07.49453.446-18 ]
9. Fadeev E.A., Blinov M.I., Garshin V.V. et al. Magnetic Properties of (Cо40Fe40B20)x(SiO2)(100−x) Nanocomposites near the Percolation Threshold. Bull. Russ. Acad. Sci. Phys. 2019;83(7):835–837. https://doi.org/10.3103/S1062873819070153 [Original Russian Text: Fadeev E.A., Blinov M.I., Garshin V.V., Tarasova O.S., Gan’shina E.A., Prudnikova M.V., Prudnikov V.N., Lyakhderanta E., Ryl’kov V.V., Granovskii A.B. Properties of (Cо40Fe40B20)x(SiO2)(100−x) Nanocomposites near the Percolation Threshold. Izvestiya Rossiiskoi akademii nauk. Seriya fizicheskaya. 2019;83(7):917–920 (in Russ.). https://doi.org/10.1134/S0367676519070159 ]
10. Gan’shina E.A., Pripechenkov I.M., Perova N.N., et al. Magneto-Optical Spectroscopy of Nanocomposites (CoFeB)x(LiNbO3)(100−x) with Concentrations up to the Percolation Threshold: From Superparamagnetism and Superferromagnetism to Ferromagnetism. Phys. Metals Metallogr. 2023;124(2):126–132. https://doi.org/10.1134/s0031918x22601949 [Original Russian Text: Gan’shina E.A., Pripechenkov I.M., Perova N.N., Kanazakova E.S., Nikolaev S.N., Sitnikov A.S., Granovskii A.B., Ryl’kov V.V. Magneto-optical spectroscopy of nanocomposites (CoFeB)x(LiNbO3)(100−x) with concentrations up to the percolation threshold: from superparamagnetism and superferromagnetism to ferromagnetism. Fizika metallov i metallovedenie. 2023;124(2):134–140 (in Russ.).]
11. Granovsky А., Sukhorukov Yu., Gan’shina E., Telegin A. Magnetorefractive effect in magnetoresistive materials. In: Magnetophotonics: From Theory to Applications. Berlin Heidelberg: Springer. 2013. P. 107–133.
12. Shkurdoda Yu.O., Dekhtyaruk L.V., Basov A.G., Chornous A.M., Shabelnyk Yu.M., Kharchenko A.P., Shabelnyk T.M. The giant magnetoresistance effect in Co/Cu/Co three-layer films. Journal of Magnetism and Magnetic Materials. 2019;477:88–91. https://www.doi.org/10.1016/j.jmmm.2019.01.040
13. Dekhtyaruk L.V., Kharchenko A.P., Klymenko Yu.O., Shkurdoda Yu.O., Shabelnyk Yu.M., Bezdidko O.V., Chornous A.M. Negative and Positive Effect of Giant Magnetoresistance in The Magnetically Ordered Sandwich. 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP). Sumy. Ukraine. 2020. P. 01NMM13-1-01NMM13-3. https://www.doi.org/10.1109/NAP51477.2020.9309694
14. Kelley C.S., Naughton J., Benson E., Bradley R.C., Lazarov V.K., Thompson S.M., Matthew J.A. Investigating the magnetic field-dependent conductivity in magnetite thin films by modelling the magnetorefractive effect. J. Phys.: Condens. Matter. 2014;26(3):036002. https://doi.org/10.1088/0953-8984/26/3/036002
15. Yurasov A., Yashin M., Ganshina E., et al. Simulation of magneto-optical properties of nanocomposites (CoFeZr)x(Al2O3)1−x. J. Phys.: Conf. Ser. 2019;1389:012113. http://doi.org/10.1088/1742-6596/1389/1/012113
Supplementary files
|
1. Spectral dependence of MRE on reflection at normal light incidence | |
Subject | ||
Type | Исследовательские инструменты | |
View
(8KB)
|
Indexing metadata ▾ |
- Using the Bruggeman effective medium approximation (EMA) to describe the optical and magneto-optical properties of nanocomposites on the example of Co-Al2O3, the characteristics of MRE are obtained, namely, the change in MRE for reflection and transmission of light at normal incidence and at the angle of incidence near the Brewster angle (below the percolation threshold) or the main angle of incidence for metals (above the percolation threshold), which enhances MRE.
- The advantage of the EMA is the ability to study magneto-optical spectra in the range of average volume concentrations of the metal component.
Review
For citations:
Mukhutdinova M.A., Yurasov A.N. Modeling of the magnetorefractive effect in Co-Al2O3 nanocomposites in the framework of the Bruggeman approximation. Russian Technological Journal. 2024;12(3):55-64. https://doi.org/10.32362/2500-316X-2024-12-3-55-64. EDN: SWVVUI