Preview

Russian Technological Journal

Advanced search

HYDROGEN ENERGY RENEWABLE CURRENT SOURCES

https://doi.org/10.32362/2500-316X-2017-5-3-58-73

Abstract

The analytical overview of hydrogen energy renewable power sources is presented. The main experimental developments performed at Moscow University for the development of new efficient materials and devices for alternative energy are described. To date, the problem of energy-saving technologies creating is one of the main tasks of modern industrial society. Progress in the development of hydrogen technologies has demonstrated that the hydrogen and hydrogen-containing fuels application leads to qualitatively new energy systems performance. In this regard, the article identifies the main types of electric energy storage by hydrogen, their advantages and development perspectives. The main types of batteries, their structure and classification are considered. The problems of integration of renewable energy into the electrical grid, technical and economic aspects are described. The main nanotechnological transformation projects, energy storage and energy saving are presented. Researchers worldwide actively working on design of chemical sources of energy, which is a electrochemical device to convert the free energy of a chemical reaction into electrical energy. One of these sources of energy are fuel cells. The main attention is given to the consideration of the operation principles of chemical power sources, particularly hydrogen-air fuel cells with solid polymer electrolyte. As fuel one can use hydrogen, methanol, ethanol, formic acid, bio-fuel, as an oxidizing agent - oxygen in the air. The fuel cell can produce electrical energy continuously as the fuel and oxidant are flowing. The key part of a fuel cell - a membrane-electrode unit - its structure and design is considered. The prospects of hydrogen energy development of renewable power sources are indicated.

About the Authors

N. A. Yashtulov
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation


M. V. Lebedeva
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation


References

1. Bagotsky V.S., Skundin A.M., Volfkovich Yu. M. Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors. John Wiley & Sons, 2015. 400 p.

2. Stolten D., Emonts B. Fuel cell science and engineering: materials, processes, systems and technology. Wiley-VCH Verlag GmbH & Co KGaA, 2012. 1268 p.

3. Сигов А.С., Матюхин В.Ф., Мельников В.М. Космические солнечные лазерные электростанции для энергоснабжения северных регионов России // Энергетическая политика. 2016. № 4. С. 65-73.

4. Да Роза А. Возобновляемые источники энергии. Физико-технические основы: учебное пособие. Пер. с англ. под редакцией С.П. Малышенко, О.С. Попеля. Долгопрудный: Издательский дом «Интеллект»; М.: Издательский дом МЭИ; 2010. 704 с.

5. Gandia L.M., Arzamedi G. Renewable hydrogen technologies: Production, purification, storage, applications and safety. Elsevier, 2013. 472 p.

6. Багоцкий В.С., Скундин А.М. Химические источники тока. М: Энергоиздат, 1981. 360 с.

7. Leung D. Y.C., Xuan J. Micro & Nano-Engineering of Fuel Cells. CRC Press, 2015. 338 p.

8. Коровин Н.В., Скундин А.М. Химические источники тока. М.: Издательство МЭИ, 2003. 740 с.

9. Antropov A.P., Ragutkin A.V., Yashtulov N.A. Micropower composite nanomaterials based on porous silicon for renewable energy sources // Int. J. Electrical, Computer, Energetic, Electronic and Communication Engineering. 2016. V. 10. № 12. P. 1346-1349.

10. Подгорный Ю.В., Лавров П.П., Воротилов К.А., Сигов А.С. Влияние изменения спонтанной поляризации на вольт-амперные характеристики сегнетоэлектрических тонких пленок // Физика твердого тела. 2015. Т. 57. № 3. С. 465-468.

11. Подгорный Ю.В., Вишневский А.С., Воротилов К.А., Сигов А.С. Моделирование вольт-амперных характеристик тонкопленочных сегнетоэлектрических структур с отрицательной дифференциальной проводимостью // Электронная техника. Серия 2: Полупроводниковые приборы. 2013. № 2 (231). С. 59-69.

12. Stolten D., Emonts B. Fuel cell science and engineering: Materials, processes, systems and technology. Wiley-VCH Verlag GmbH & Co KGaA, 2012. V. 1-2. 1268 p.

13. Жемлиханов Т. Аккумуляторные батареи. Российские внешнеторговые потоки // Электротехнический рынок. 2015. № 2 (62). C. 28-30.

14. Каменев Ю.Б, Чезлов И.Г. Современные химические источники тока. Гальванические элементы, аккумуляторы, конденсаторы. М.: С-Пб: СПбГУКиТ, 2009. 90 с.

15. Яштулов Н.А., Патрикеев Л.Н., Зенченко В.О., Лебедева М.В., Зайцев Н.К., Флид В.Р. Нанокатализаторы палладий-платина-пористый кремний для топливных элементов с прямым окислением муравьиной кислоты // Российские нанотехнологии. 2016. Т. 11. № 9-10. С. 45-50.

16. Яштулов Н.А., Лебедева М.В., Флид В.Р. Нанокомпозиты на основе палладия - высокоэффективные катализаторы для химических источников тока // Известия РАН. Сер. химическая. 2015. Т. 64. № 1. С. 24-28.

17. Яштулов Н.А. Электронодефицитные наночастицы платины и палладия на пористом кремнии // Вестник МИТХТ. 2011. Т. 6. № 3. С. 87-90.

18. Яштулов Н.А., Патрикеев Л.Н., Зенченко В.О., Смирнов С.Е., Лебедева М.В., Флид В.Р. Формирование и каталитические свойства материалов на основе пористого кремния с наночастицами платины // Российские нанотехнологии. 2015. Т. 10. № 11-12. С. 91-96.

19. Tiwari G.N., Mishra R.K. Advanced renewable energy sources. RSC Publishing, Cambridge, 2012. 562 p.

20. Pedraza J.M. Electrical energy generation in Europe: The current situation and perspectives in the use of renewable energy sources and nuclear power for regional electricity generation. Cham; Heidelberg; New York; Dordrecht; London: Springer, 2015. 640 p.

21. Misak S., Prokop L. Green energy and technology. Operation characteristics of renewable energy sources (1 ed.). Springer Int. Publ. Switzerland. 2017. 235 p.

22. Cheng X., Shi Z., Glass N., Zhang L., Zhang J. A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation // J. Power Sources. 2007. V. 165. № 2. P. 739-756.

23. Ghenciu A.F. Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems // Current opinion in solid state and materials science. 2002. V. 6. № 5. P. 389-399.

24. Hartnig C., Roth C. Polymer electrolyte membrane and direct methanol fuel cell technology. Vol. 2: In-situ characterization techniques for low temperature fuel cells. Woodhead Publ. Ltd., 2012. 516 p.

25. Zhang J. PEM fuel cell electrocatalysts and catalyst layers. Fundamentals and applications. Springer Science & Business Media, 2008. - 1137 p.

26. Vielstich W., Lamm A. Handbook of Fuel Cells: Fundamentals, Technology, Applications. Wiley, 2003. 3826 p.

27. Basu S. Recent trends in fuel science and technology. New York: Anamaya Publ.; New Delhi, India, 2007. 375 p.

28. Vielstich W., Yokokawa H., Gasteiger H.A. Handbook of fuels: Fundamentals, technology and applications. Vol. 6. John Wiley & Sons: New York, 2009. 728 p.

29. Ghenciu A.F. Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems // Current opinion in solid state and materials science. 2002. V. 6. № 5. P. 389-399.

30. Rabis A., Paramaconi R., Schmidt T.J. Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges // ACS Catal. 2012. V. 2. № 5. Р. 864-890.

31. Tiwari J.N., Tiwari R.N., Singh G., Kim K.S. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells (review) // Nano Energy. 2013. V. 2. P. 553-578.

32. Тарасевич М.Р., Кузов А.В. Топливные элементы прямого окисления спиртов // Альтернативная энергетика и экология. 2010. Т. 87. № 7. С. 86-108.


Review

For citations:


Yashtulov N.A., Lebedeva M.V. HYDROGEN ENERGY RENEWABLE CURRENT SOURCES. Russian Technological Journal. 2017;5(3):58-73. (In Russ.) https://doi.org/10.32362/2500-316X-2017-5-3-58-73

Views: 1311


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)