Preview

Russian Technological Journal

Advanced search

THERMAL MODELLING OF TERAHERTZ QUANTUM-CASCADE LASER BASED ON NANOHETEROSTRUCTURES GaAs/AlGaAs

https://doi.org/10.32362/2500-316X-2016-4-3-27-36

Abstract

This work presents the result of a simulation of thermal processes in a terahertz quantum cascade laser (THz QCL) based on GaAs/AlGaAs nanoheterostructure with a bimetal waveguide. A simplified model of THz QCL was built. Model simplifications of THz QCL were justified. The temperature distribution and maximum temperature values in the active region were obtained for different duty cycles and for various active region sizes with proportional heat generation change. Different types of bonding of the active region and substrate were simulated. According to the results a conclusion about the optimal duty cycle and frequency for the pulse mode were formulated. The time-to-stationary mode for different pulse width was calculated. The maximum temperature gradient in THz QCL was calculated.

About the Authors

I. A. Glinskiy
Moscow Technological University (MIREA)
Russian Federation


N. V. Zenchenko
Moscow Technological University (MIREA)
Russian Federation


P. P. Maltsev
Moscow Technological University (MIREA)
Russian Federation


References

1. Kohler R., Tredicucci A., Beltram F., Beere H.E. Terahertz semiconductor-heterostructure laser // Nature. 2002. № 417. P. 156-159.

2. Rochat M., Ajili L., Willenberg H., Faist J., Beere H., Davies G., Linfield E., Ritchie D. Low-threshold terahertz quantum-cascade lasers // Appl. Phys. Lett. 2002. V. 81. P. 1381-1383.

3. Tredicucci A., Capasso F., Gmachl C., Sivco D.L, Hutchinson A.L., Cho A.Y. High performance interminiband quantum cascade lasers with graded superlattices // Appl. Phys. Lett. 1998. V. 73. P. 2101-2103.

4. Wanke M., Capasso F., Gmachl C., Tredicucci A. Injectorless quantum-cascade lasers // Appl. Phys. Lett. 2001. V. 78. P. 3950-3952.

5. Williams B.S., Callebaut H., Kumar S., Hu Q. 3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation // Appl. Phys. Lett. 2003. V. 82. P. 1015-1017.

6. Williams B.S. Terahertz quantum-cascade lasers // Nature Photonics. 2007. № 1. P. 517-525.

7. Kumar S., Hu Q., Reno J.L. 186 K operation of terahertz quantum-cascade lasers based on a diagonal design // Appl. Phys. Lett. 2009. № 9. P. 131105.

8. Fathololoumi S., Dupont E., Chan C.W.I., Wasilewski Z.R., Laframboise S.R., Ban D., Matyas A., Jirauschek C., Hu Q., Liu H.C. Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling // Optics Express. 2012. V. 20 (4). P. 3866-3876.

9. Evans C.A., Indjin D., Ikonic Z., Harrison P., Vitiello M.S., Spagnolo V., Scamarcio G. Thermal modeling of terahertz quantum-cascade lasers: Comparison of optical waveguides // IEEE J. Quantum Electronics. 2008. V. 44. № 7. P. 680-685.

10. Kumar S., Williams B.S., Kohen S., Hu Q., Reno J.L. Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature // Appl. Phys. Lett. 2004. V. 84. P. 2494-2496.

11. Williams B.S., Kumar S., Hu Q., Reno J.L. Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode // Optics Express. 2005. V. 13. № 9. P. 3331-3339.

12. Гареев Г.З., Лучинин В.В. Терагерцовые системы и технологии (обзор современ- ного состояния). СПб.: СПбГЭТУ «ЛЭТИ», 2015. 228 с.

13. Kohen S., Williams B.S., Hu Q. Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators // J. Appl. Phys. 2005. № 97. P. 053106.

14. Belkin M.A., Fan J.A., Hormoz S., Capasso F., Khanna S.P., Lachab M., Davies A.G., Linfield E.H. Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K // Optics Express. 2008. V. 16. № 5. P. 3242-3248.

15. Hugi A., Maulini R., Faist J. External cavity quantum cascade laser // Semiconductor Science and Technology. 2010. № 25. P. 083001.

16. Wittmann A., Bonetti Y., Fischer M., Faist J., Blaser S., Gini E. Distributed-feedback quantum-cascade lasers at 9 μm operating in continuous wave up to 423 K // IEEE Photonics Technol. Lett. 2009. V. 21. № 12. P. 814-816.

17. Glinskii I.A., Zenchenko N.V. Computer simulation of the heat distribution element for high-power microwave transistors // Russian Microelectronics. 2015. V. 44. № 4. P. 236-240.

18. Глинский И.А., Рубан О.А., Алёшин А.Н., Зенченко Н.В., Мельников А.А. Расчет тепловых режимов HEMT-транзисторов на основе гетероструктуры AlGaN/GaN // Нано- и микросистемная техника. 2014. № 11. С. 43-48.

19. Зенченко Н.В., Рубан О.А., Алёшин А.Н., Глинский И.А., Мельников А.А. Моде- лирование нестационарных тепловых режимов HEMT-транзистора // Нано- и микроси- стемная техника. 2014. № 12. С. 3-6.

20. Blakemore J.S. Semiconducting and other major properties of gallium arsenide // J. Appl. Phys. 1982. V. 53. № 10. P. R123-R181.

21. Cetas T.C., Swenson C.A., Tilfor C.R. // Phys. Rev. Ser. 2. 1968. V. 174. P. 835.

22. Carlson R.O., Slack G.A. Silverman S.J. Thermal conductivity of GaAs and GaAsl-zPz laser semiconductors // J. Appl. Phys. 1965. V. 36. № 2. P. 505-507.

23. Williams B.S., Kumar S., Hu Q., Reno J.L. High-power terahertz quantum-cascade lasers // Electronics Letters. 2006. V. 42. № 2. P. 89-91.

24. http://www.trlsys.ru/products_cryo_closed.shtml.


Review

For citations:


Glinskiy I.A., Zenchenko N.V., Maltsev P.P. THERMAL MODELLING OF TERAHERTZ QUANTUM-CASCADE LASER BASED ON NANOHETEROSTRUCTURES GaAs/AlGaAs. Russian Technological Journal. 2016;4(3):27-36. (In Russ.) https://doi.org/10.32362/2500-316X-2016-4-3-27-36

Views: 550


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)