Preview

Russian Technological Journal

Advanced search

Velocity field of image points in satellite imagery of planet’s surface

https://doi.org/10.32362/2500-316X-2020-8-1-97-109

Abstract

This paper derives a formula for calculating the velocity of arbitrary point in the field of view of the satellite camera in the process of orbital imagery of the planet's surface. The formula describes the velocity as a function of the point coordinates in the image fixation plane, the focal length of the imaging camera, the orbital parameters of the satellite, the angular velocity of the planet’s rotation, the coordinates of the satellite’s true anomaly in the orbit, the orientation angles of the imaging camera relative to the orbit, and the angular velocity of the camera. The paper also provides examples of the formula use for calculating the velocity field of image points for different sets of imagery parameters.
The formula is derived under the assumption that the planet is a homogeneous absolutely solid body, shaped as a ball, and rotating at a constant angular velocity; as a result, the satellite moves in a Keplerian orbit, with the planet located at one of the orbit’s foci. Despite this idealization, the derived formula can be used in developing algorithms for remote sensing of the Earth, for building and optimizing the image blurring compensators, for solving the problem of blurred image recovery, and for a number of other problems related to satellite imagery preparation, execution, and processing the results.

About the Authors

V. Ya. Gecha
”VNIIEM Corporation” JC
Russian Federation

Vladimir Ya. Gecha - Dr. Sci. (Engineering), Professor, Deputy General Director, Chief Designer of Open Joint Company ‘Research and Production Corporation ‘Space Monitoring Systems, Information & Control and Electromechanical Complexes’ named after A.G. Iosifian’

4/1, Khoromny tupik, Moscow 107078



M. Yu. Zhilenev
”VNIIEM Corporation” JC
Russian Federation

Mikhail Yu. Zhilenev - Senior Researcherof Open Joint Company ‘Research and Production Corporation‘ Space Monitoring Systems, Information & Control and Electromechanical Complexes’ named after A.G. Iosifian’

4/1, Khoromny tupik, Moscow 107078



V. B. Fyodorov
MIREA – Russian Technological University
Russian Federation

Viktor B. Fyodorov - Cand. Sci. (Physics and Mathematics), Associate Profesor, Associate Professor of the Department of Higher Mathematics of the Institute of Cybernetics

78, Vernadskogo pr., Moscow 119454



D. A. Khrychev
MIREA – Russian Technological University
Russian Federation

Dmitry A. Khrychev - Cand. Sci. (Physics and Mathematics), Associate Professor, Associate Professor of the Department of Higher Mathematics of the Institute of Cybernetics

78, Vernadskogo pr., Moscow 119454



Yu. I. Hudak
MIREA – Russian Technological University
Russian Federation

Yury I. Hudak - Dr.Sci. (Engineering), Professor, Head of the Department of Higher Mathematics of the Institute of Cybernetics

78, Vernadskogo pr., Moscow 119454



A. V. Shatina
MIREA – Russian Technological University
Russian Federation

Albina V. Shatina - Dr.Sci. (Physics and Mathematics), Associate Professor, Professor of the Department of Higher Mathematics of the Institute of Cybernetics

78, Vernadskogo pr., Moscow 119454



References

1. Gecha V.Y., Zhilenev M.Y., Fyodorov V.B., Khrychev D.A., Khudak Y.I., Shatina A.V. The image speed during the optical-electronic surfacing the planet. Rossiiskii technologicheskii zhurnal = Russian Technological Journal. 2018;6(4):65-77 (in Russ.) https://doi.org/10.32362/2500-316X-2018-6-4-65-77

2. Eremeeva V.V. (Ed.). Sovremennye tekhnologii obrabotki dannykh distantsionnogo zondirovaniya Zemli (Modern Data Processing Technologies for Remote Sensing of the Earth). Moscow: Fizmatlit; 2015. 460 p. (in Russ.) ISBN 9785-9221-1596-4

3. Somov Ye., Butyrin S., Somov S., Hajiyev C. Attitude guidance, navigation and control of land-survey minisatellites. In: Proceedings of IFAC international workshop on advanced control and navigation for autonomous aerospace vehicles. Seville, 2015. P. 222–227. https://doi.org/10.1016/j.ifacol.2015.08.087

4. Showengerdt R.A. Remote Sensing. Models and Methods for Image Processing. Burligton: Academic Press; 2007. 515 p.

5. Tikhonov A.N., Goncharsky A.V., Stepanov V.V. Inverse problems of image processing. In: Nekorrektnye zadachi estestvoznaniya (Incorrect Tasks of Natural Science). Moscow: MGU Publishing House; 1987. P. 185−195 (in Russ.)

6. Petit G., Luzum B. (Eds.) IERS Conventions (2010). (IERS Technical Note No.36). Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie; 2010. 179 p. ISBN 3-89888-989-6

7. Duboshin G.N. Nebesnaya mekhanika. Osnovnye zadachi i metody (Celestial Mechanics. Main tasks and methods). Moscow: Nauka; 1975. 800 p. (in Russ.)

8. Murray Carl D. Solar system dynamics Cambridge: Cambridge university press; 2009. 588 p. ISBN 978-5-92211121-8

9. Vilʼke V.G. Teoreticheskaya mekhanika: uchebnik i praktikum dlya akademicheskogo bakalavriata (Theoretical Mechanics: a textbook and a practical work for academic baccalaureate). Moscow: Yurait Publ.; 2016. 311 p. (in Russ.) ISBN 978-5-534-03481-3


Supplementary files

1. Fig. 5. Velocity field of the motion of image points in the plane Π.
Subject
Type Исследовательские инструменты
View (39KB)    
Indexing metadata ▾

Review

For citations:


Gecha V.Ya., Zhilenev M.Yu., Fyodorov V.B., Khrychev D.A., Hudak Yu.I., Shatina A.V. Velocity field of image points in satellite imagery of planet’s surface. Russian Technological Journal. 2020;8(1):97-109. (In Russ.) https://doi.org/10.32362/2500-316X-2020-8-1-97-109

Views: 1282


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)