Estimation of the Gaussian blur parameter by comparing histograms of gradients with a standard image
https://doi.org/10.32362/2500-316X-2025-13-6-139-147
EDN: OVEHAM
Abstract
Objectives. The aim of this study is to develop a method for automatic quantitative estimation of the Gaussian blur parameter in digital images, which typically arises due to defocus of the optical system, various optical and camerainduced aberrations, as well as the influence of the propagation medium. This task is highly relevant for a wide range of applied fields, including remote sensing, forensic analysis, photogrammetry, medical imaging, automated inspection, and preprocessing of visual data prior to solving restoration, classification, or recognition problems.
Methods. The proposed method is based on comparing the two-dimensional histogram of gradients of the analyzed image with reference histograms precomputed for a high-sharpness image with similar texture and scale. The reference image is artificially blurred using convolution with a Gaussian kernel at various blur levels. For each level of blur, a two-dimensional gradient histogram is constructed, representing the distribution of directions and magnitudes of local intensity changes. The comparison with the corresponding histogram of the target image is performed after applying a logarithmic transformation and computing the Euclidean norm. This approach provides high sensitivity, interpretability, and numerical stability. The method does not require edge detection, neural network training, or labeled data, and can be implemented with minimal computational cost.
Results. Tests on synthetic data demonstrate that the proposed approach achieves high accuracy: the relative error in estimating the Gaussian blur parameter within the range of 0.7 to 2.0 pixels is less than 5%, and in most cases does not exceed 2–3%. The method is robust to noise, compression, local artifacts, and texture inhomogeneities.
Conclusions. The developed approach can be applied in automated image analysis systems as well as in blind deconvolution preprocessing tasks. It offers high accuracy, implementation simplicity, and reproducibility, providing reliable blur estimation under minimal data assumptions.
About the Authors
V. B. FedorovRussian Federation
Victor B. Fedorov, Cand. Sci. (Eng.), Associate Professor, Higher Mathematics Department, Institute of Artificial Intelligence
78, Vernadskogo pr., Moscow, 119454
Scopus Author ID 57208924592
Competing Interests:
The authors declare no conflicts of interest.
S. G. Kharlamov
Russian Federation
Sergey G. Kharlamov, Postgraduate Student, Higher Mathematics Department, Institute of Artificial Intelligence
78, Vernadskogo pr., Moscow, 119454
Competing Interests:
The authors declare no conflicts of interest.
References
1. Flusser J., Lebl M., Sroubek F., Pedone M., Kostkova J. Blur Invariants for Image Recognition. Int. J. Computer Vision. 2023;131(9):2298–2315. https://doi.org/10.1007/s11263-023-01798-7
2. Bergstrom A.C., Conran D., Messinger D.W. Gaussian Blur and Relative Edge Response. arXiv. arXiv:2301.00856. 2023. https://doi.org/10.48550/arXiv.2301.00856
3. Varela L.G., Boucheron L.E., Sandoval S., Voelz D., Siddik A.B. Estimation of Motion Blur Kernel Parameters Using Regression Convolutional Neural Networks. arXiv. arXiv:2308.01381. 2023. http://doi.org/10.48550/arXiv.2308.01381
4. Zhang K., Ren W., Luo W., Lai W.-S., Stenger B., Yang M.-H., Li H. Deep Image Deblurring: A Survey. arXiv. arXiv:2201.10700. 2022. https://doi.org/10.48550/arXiv.2201.10700
5. Levin A., Weiss Y., Durand F., Freeman W.T Understanding and Evaluating Blind Deconvolution Algorithms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2009. P. 1964–1971. https://doi.org/10.1109/CVPR.2009.5206815
6. Ren D., Zhang K., Wang Q., Hu Q., Zuo W. Neural Blind Deconvolution Using Deep Priors. arXiv. arXiv:1908.02197. 2019. https://doi.org/10.48550/arXiv.1908.02197
7. Yu J., Chang Z., Xiao C. Edge-Based Blur Kernel Estimation Using Sparse Representation and Self-Similarity. arXiv. arXiv:1811.07161. 2018. https://doi.org/10.48550/arXiv.1811.07161
8. Chen F., Ma J. An Empirical Identification Method of Gaussian Blur Parameter for Image Deblurring. IEEE Trans. Signal Proces. 2009;57(7):2467–2478. https://doi.org/10.1109/TSP.2009.2018358
9. Fedorov V.B., Kharlamov S.G., Fedorov A.V. Image restoration using a discrete point spread function with consideration of finite pixel size. Russ. Technol. J. 2025;13(2):143–154. https://doi.org/10.32362/2500-316X-2025-13-2-143-154, https://elibrary.ru/GXAGAW
10. Pawanikar N.K., Strivaramangai R. Review of Single Blind Image Deblurring Techniques. Int. J. Computer Sci. Trends Technol. 2023;11(3):26–40. URL: https://www.ijcstjournal.org/volume-11/issue-3/IJCST-V11I3P7.pdf
11. Yu H., Li D., Chen Y. A State-of-the-Art Review of Image Motion Deblurring Techniques in Remote Sensing. Heliyon. 2023;9(6):e17332. https://doi.org/10.1016/j.heliyon.2023.e17332
12. Huang Y., Chouzenoux E., Pesquet J.-C. Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution. arXiv. arXiv:2110.07202. 2021. https://doi.org/10.48550/arXiv.2110.07202
13. Tiwari S., Shukla V.P., Singh A.K., Biradar S.R. Review of Motion Blur Estimation Techniques. J. Image Graphics. 2013;1(4):176–184. https://doi.org/10.12720/JOIG.1.4.176-184
14. Couzinie-Devy F., Sun J., Alahari K., Ponce J. Learning to Estimate and Remove Non-uniform Image Blur. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2013. P. 1075–1082. https://doi.org/10.1109/CVPR.2013.143
15. Yan R., Shao L. Blind Image Blur Estimation via Deep Learning. In: Proceedings of the IEEE Transactions on Image Processing. 2016;25(4):1910–1921. URL: https://core.ac.uk/download/pdf/79609188.pdf
Review
For citations:
Fedorov V.B., Kharlamov S.G. Estimation of the Gaussian blur parameter by comparing histograms of gradients with a standard image. Russian Technological Journal. 2025;13(6):139–147. https://doi.org/10.32362/2500-316X-2025-13-6-139-147. EDN: OVEHAM


























