Generative adversarial networks in cyber security: Literature review
https://doi.org/10.32362/2500-316X-2025-13-5-7-24
EDN: ISXHGA
Abstract
Objectives. This review article sets out to evaluate the use of Generative Adversarial Networks (GANs) to revolutionize cybersecurity and anomaly detection process. The research focuses in particular on the capabilities of GANs to produce synthetic data and simulate adversarial attacks, as well as identifying outliers and resolving training, instability, and ethical issues.
Methods. A systematic review of relevant peer-reviewed articles spanning 2014 through 2024 was undertaken.
Results. The discussion concentrated on two main areas of GAN application: (1) cybersecurity through intrusion detection and adversarial testing; (2) anomaly detection for medical diagnostics and surveillance purposes. The research studied two essential GAN variants named Wasserstein GANs and Conditional GANs for their performance in addressing technical challenges. The assessment of synthetic data quality used the Fréchet Inception Distance and Structural Similarity Index Measure as evaluation metrics.
Conclusions. GANs enhance security measures through their production of caused datasets resulting in a 25% improvement of detection systems accuracy. The technique allows strong adversarial assessment to reveal system weaknesses while helping detect irregularities in data-poor areas for medical diagnostics. High-dimensional tasks demonstrate 40% training instability and lead to 30% output diversity loss. The need for regulatory frameworks becomes essential due to ethical issues, which include the use of deepfakes that result in 25% success rates of biometric system evasion. Given ethical rules regulating their proper use, GANs advance cybersecurity by providing anomaly detection simultaneously with improved training stability and lower operating expenses. Prior versions of GAN-reinforcement learning and additional transparent systems require focused development as part of responsible innovation efforts.
About the Authors
Z. ArafatIraq
Zaid Arafat, Assistant Lecturer, Department of Cybersecurity
Karbala, 56001
Scopus Author ID 57963547500
Competing Interests:
The authors declare no conflicts of interest
O. V. Yudina
Russian Federation
Olga V. Yudina, Cand. Sci. (Eng.), Associate Professor, Department of Mathematics and Computer Software
Cherepovets, 162600
Competing Interests:
The authors declare no conflicts of interest
Z. A. Abdulazeez
Iraq
Zainab A. Abdulazeez, Assistant Lecturer, College of Education for Human Sciences
Karbala, 56001
Scopus Author ID 57220186609
Competing Interests:
The authors declare no conflicts of interest
References
1. Goodfellow I., Pouget-Abadie J., Mirza M., et al. Generative adversarial networks. Commun. ACM. 2020;63(11):139–144. https://doi.org/10.1145/3422622
2. Arifin M.M., Ahmed M.S., Ghosh T.K., Udoy I.A., Zhuang J., Yeh J. A Survey on the Application of Generative Adversarial Networks in Cybersecurity: Prospective. Direction and Open Research Scopes. 2024. ArXiv Prepr. arXiv:2407.08839. https://doi.org/10.48550/arXiv.2407.08839
3. Sabuhi M., Zhou M., Bezemer C.-P., Musilek P. Applications of Generative Adversarial Networks in Anomaly Detection: A Systematic Literature Review. IEEE Access. 2021;9:161003–161029. https://doi.org/10.1109/ACCESS.2021.3131949
4. Aggarwal A., Mittal V., Battineni G. Generative adversarial network: An overview of theory and applications. Int. J. Inf. Manag. Data Insights. 2021;1(1):100004. https://doi.org/10.1016/j.jjimei.2020.100004
5. Cao Y.-J., Jia L.-L., Chen Y.-X., et al. Recent Advances of Generative Adversarial Networks in Computer Vision. IEEE Access. 2019;7:14985–15006. https://doi.org/10.1109/ACCESS.2018.2886814
6. Radford A., Metz L., Chintala S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. 2016.ArXiv Prepr. arXiv:1511.06434. https://doi.org/10.48550/arXiv.1511.06434
7. Arjovsky M, Chintala S., Bottou L. Wasserstein generative adversarial networks. In: Proceedings of the International Conference on Machine Learning (ICML). PMLR. 2017. P. 214–223. Available from URL: https://proceedings.mlr.press/v70/arjovsky17a/arjovsky17a.pdf
8. Zhu J.-Y., Park T., Isola P., Efros A.A. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. 2020. ArXiv Prepr. arXiv:1703.10593. https://doi.org/10.48550/arXiv.1703.10593
9. Mirza M., Osindero S. Conditional Generative Adversarial Nets. 2014. ArXiv Prepr. arXiv:1411.1784. https://doi.org/10.48550/arXiv.1411.1784
10. Karras T., Laine S., Aila T. A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019. P. 4401–4410. https://doi.org/10.1109/CVPR.2019.00453
11. Sedjelmaci H. Attacks detection and decision framework based on generative adversarial network approach: Case of vehicular edge computing network. Trans. Emerg. Telecommun. Technol. 2022;33(10):e4073. https://doi.org/10.1002/ett.4073
12. Kumaran U., Thangam S., Prabhakar T.N., Selvaganesan J., Vishwas H.N. Adversarial Defense: A GAN-IF Based Cybersecurity Model for Intrusion Detection in Software Piracy. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 2023;14(4):96–114. http://doi.org/10.58346/JOWUA.2023.I4.008
13. Haloui I., Gupta J.S., Feuillard V. Anomaly detection with Wasserstein GAN. 2018. ArXiv Prepr. arXiv:1812.02463. https://doi.org/10.48550/arXiv.1812.02463
14. Kimura D., Chaudhury S., Narita M., Munawar A., Tachibana R. Adversarial Discriminative Attention for Robust Anomaly Detection. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE; 2020. P. 2161–2170. https://doi.org/10.1109/WACV45572.2020.9093428
15. Dunmore A., Jang-Jaccard J., Sabrina F., Kwak J. A Comprehensive Survey of Generative Adversarial Networks (GANs) in Cybersecurity Intrusion Detection. IEEE Access. 2023;11:76071–76094. https://doi.org/10.1109/ACCESS.2023.3296707
16. Kos J., Fischer I., Song D. Adversarial examples for generative models. 2017. ArXiv Prepr. arXiv:1702.06832. https://doi.org/10.48550/arXiv.1702.06832
17. Chhetri S.R., Lopez A.B., Wan J., Al Faruque M.A. GAN-Sec: Generative Adversarial Network Modeling for the Security Analysis of Cyber-Physical Production Systems. In: 2019 Design. Automation & Test in Europe Conference & Exhibition (DATE). IEEE; 2019. P. 770–775. https://doi.org/10.23919/DATE.2019.8715283
18. Mao X., Li Q., Xie H., et al. Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017. P. 2794–2802. https://doi.org/10.1109/ICCV.2017.304
19. Nataraj L., Karthikeyan S., Jacob G., Manjunath B.S. Malware images: visualization and automatic classification. In: Proceedings of the 8th International Symposium on Visualization for Cyber Security. 2011. P. 1–7. https://doi.org/10.1145/2016904.2016908
20. Chen X., Duan Y., Houthooft R., et al. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems (NeurIPS). 2016;29:2172–2180.
21. Alo S.O., Jamil A.S., Hussein M.J., Al-Dulaimi M.K.H., Taha S.W., Khlaponina A. Automated Detection of Cybersecurity Threats Using Generative Adversarial Networks (GANs). In: 2024 36th Conference of Open Innovations Association (FRUCT). IEEE. 2024. P. 566–577. https://doi.org/10.23919/FRUCT64283.2024.10749874
22. Zhang J., Li C. Adversarial examples: Opportunities and challenges. IEEE Trans. Neural Netw. Learn. Syst. 2019;31(7): 2578–2593. https://doi.org/10.1109/TNNLS.2019.2933524
23. Zhang S., Xie X., Xu Y. A Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity. IEEE Access. 2020;8:128250–128263. https://doi.org/10.1109/ACCESS.2020.3008433
24. Papernot N., McDaniel P., Goodfellow I., Jha S., Celik Z.B., Swami A. Practical Black-Box Attacks against Machine Learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. ACM. 2017. P. 506–519. https://doi.org/10.1145/3052973.3053009
25. Kurakin A., Goodfellow I.J., Bengio S. Adversarial examples in the physical world. In book: Artificial Intelligence Safety and Security. Chapman and Hall/CRC. 2018. P. 99–112. https://doi.org/10.1201/9781351251389, Available from URL: https://www.taylorfrancis.com/chapters/edit/10.1201/9781351251389-8/adversarial-examples-physical-world-alexeykurakin-ian-goodfellow-samy-bengio
26. Taheri S., Khormali A., Salem M., Yuan J.-S. Developing a robust defensive system against adversarial examples using generative adversarial networks. Big Data Cogn. Comput. 2020;4(2):11. https://doi.org/10.3390/bdcc4020011
27. Carlini N., Wagner D. Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP). IEEE. 2017. P. 39–57. https://doi.org/10.1109/SP.2017.49
28. Madry A., Makelov A., Schmidt L., Tsipras D., Vladu A. Towards Deep Learning Models Resistant to Adversarial Attacks. 2019. ArXiv Prepr. arXiv:1706.06083. https://doi.org/10.48550/arXiv.1706.06083
29. Sharif M., Bhagavatula S., Bauer L., Reiter M.K. Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM. 2016. P. 1528–1540. https://doi.org/10.1145/2976749.2978392
30. Akhtar N., Mian A. Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access. 2018;6: 14410–14430. https://doi.org/10.1109/ACCESS.2018.2807385
31. Dong Y., Pang T., Su H., Zhu J. Evading defenses to transferable adversarial examples by translation-invariant attacks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. P. 4312–4321. Available from URL: http://openaccess.thecvf.com/content_CVPR_2019/html/Dong_Evading_Defenses_to_Transferable_Adversarial_Examples_by_Translation-Invariant_Attacks_CVPR_2019_paper.html
32. Shafahi A., Najibi M., Ghiasi A., et al. Adversarial training for free! Adv. Neural Inf. Process. Syst. 2019:32. Available from URL: https://proceedings.neurips.cc/paper/by-source-2019-1853
33. Xiao C., Li B., Zhu J., He W., Liu M., Song D. Generating Adversarial Examples with Adversarial Networks. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization. 2018. P. 3905–3911. https://doi.org/10.24963/ijcai.2018/543
34. Hou T., Wang T., Lu Z., Liu Y., Sagduyu Y. IoTGAN: GAN powered camouflage against machine learning based IoT device identification. In: 2021 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE. 2021. P. 280–287. https://doi.org/10.1109/DySPAN53946.2021.9677264
35. Kurakin A., Goodfellow I., Bengio S. Adversarial examples in the physical world. 2017. ArXiv Prepr. arXiv:1607.02533. https://doi.org/10.48550/arXiv.1607.02533.
36. Goodfellow I., Pouget-Abadie J., Mirza M., et al. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014;27. Available from URL: https://proceedings.neurips.cc/paper/5423-generative-adversarial-nets
37. Bengio Y. Learning Deep Architectures for AI. Found. Trends® Mach. Learn. 2009;2(1):1–127. https://doi.org/10.1561/2200000006
38. Isola P., Zhu J.-Y., Zhou T., Efros A.A. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. P. 1125–1134. Available from URL: http://openaccess.thecvf.com/content_cvpr_2017/html/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.html
39. Salimans T., Goodfellow I., Zaremba W., et al. Improved techniques for training GANs. In: Adv. Neural Inf. Process. Syst. (NeurIPS). 2016;29. Available from URL: https://proceedings.neurips.cc/paper_files/paper/2016/hash/8a3363abe792db2d8761d6403605aeb7-Abstract.html
40. Arjovsky M., Bottou L. Towards Principled Methods for Training Generative Adversarial Networks. 2017. ArXiv Prepr. arXiv:1701.04862. https://doi.org/10.48550/arXiv.1701.04862
41. Ho J., Ermon S. Generative adversarial imitation learning. Adv. Neural Inf. Process. Syst. (NeurIPS). 2016;29. Available from URL: https://papers.nips.cc/paper_files/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html
42. Mittal S., Joshi A., Finin T. Cyber-All-Intel: An AI for Security related Threat Intelligence. 2019. ArXiv Prepr. arXiv:1905.02895. https://doi.org/10.48550/arXiv.1905.02895
43. Yinka-Banjo C., Ugot O.-A. A review of generative adversarial networks and its application in cybersecurity. Artif. Intell. Rev. 2020;53(3):1721–1736. https://doi.org/10.1007/s10462-019-09717-4
44. Yan Q., Wang M., Huang W., Luo X., Yu F.R. Automatically synthesizing DoS attack traces using generative adversarial networks. Int. J. Mach. Learn. Cybern. 2019;10(12):3387–3396. https://doi.org/10.1007/s13042-019-00925-6
45. Goodfellow I.J., Pouget-Abadie M., Mirza M., et al. Generative adversarial nets. Adv. Neural Inf. Process. Syst. (NeurIPS). 2014;27. Available from URL: https://papers.nips.cc/paper_files/paper/2014/hash/f033ed80deb0234979a61f95710dbe25-Abstract.html
46. Choi Y., Choi M., Kim M., Ha J.-W., Kim S., Choo J. StarGAN: Unified Generative Adversarial Networks for Multi-domain Image-to-Image Translation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE. 2018. P. 8789–8797. https://doi.org/10.1109/CVPR.2018.00916
47. Karras T., Aila T., Laine S., Lehtinen J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. In: International Conference on Learning Representations. 2018. Available from URL: https://research.aalto.fi/en/publications/progressive-growing-of-gans-for-improved-quality-stability-and-va
48. Brock A., Donahue J., Simonyan K. Large Scale GAN Training for High Fidelity Natural Image Synthesis. In: International Conference on Learning Representations. 2018. https://doi.org/10.48550/arXiv.1809.11096
49. Wang T.-C., Liu M.-Y., Zhu J.-Y., Tao A., Kautz J., Catanzaro B. High-resolution image synthesis and semantic manipulation with conditional gans. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018. P. 8798–8807. Available from URL: http://openaccess.thecvf.com/content_cvpr_2018/html/Wang_High-Resolution_Image_Synthesis_CVPR_2018_paper.html
50. Li C., Wand M. Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks. In: Leibe B., Matas J., Sebe N., Welling M. (Eds.). Computer Vision – ECCV 2016. Series: Lecture Notes in Computer Science. Cham: Springer; 2016. V. 9907. P. 702–716. https://doi.org/10.1007/978-3-319-46487-9_43
51. Mirsky Y., Lee W. The Creation and Detection of Deepfakes: A Survey. ACM Comput. Surv. Jan. 2022;54(1):1–41. https://doi.org/10.1145/3425780
52. Odena A., Olah C., Shlens J. Conditional image synthesis with auxiliary classifier GANs. In: Proceedings of the 34th International Conference on Machine Learning (ICML). PMLR. 2017. P. 2642–2651. Available from URL: https://proceedings.mlr.press/v70/odena17a.html
53. Wang Z., She Q., Ward T.E. Generative Adversarial Networks in Computer Vision: A Survey and Taxonomy. ACM Comput. Surv. 2022;54(2):1–38. https://doi.org/10.1145/3439723
54. Creswell A., White T., Dumoulin V., Arulkumaran K., Sengupta B., Bharath A.A. Generative Adversarial Networks: An Overview. IEEE Signal Process. Mag. 2018;35(1):53–65. https://doi.org/10.1109/MSP.2017.2765202
55. Zhang H., Goodfellow I., Metaxas L., et al. Self-attention generative adversarial networks. In: Proceedings of the 36th International Conference on Machine Learning (ICML). PMLR. 2019. P. 7354–7363. Available from URL: https://proceedings.mlr.press/v97/zhang19d.html
56. Lucic M., Kurach K., Michalski M., Gelly S., Bousquet O. Are gans created equal? A large-scale study. Adv. Neural Inf. Process. Syst. (NeurIPS) 2018;31. Available from URL: https://proceedings.neurips.cc/paper/2018/hash/e46de7e1bcaaced9a54f1e9d0d2f800d-Abstract.html
57. Sun H., Zhu T., Zhang Z., Xiong D.J.P., Zhou W. Adversarial Attacks Against Deep Generative Models on Data: A Survey. IEEE Trans. Knowl. Data Eng. 2023;35(4):3367–3388. https://doi.org/10.1109/TKDE.2021.3130903
58. Miyato T., Kataoka T., Koyama M., Yoshida Y. Spectral Normalization for Generative Adversarial Networks. 2018. ArXiv Prepr. arXiv:1802.05957. https://doi.org/10.48550/arXiv.1802.05957
59. Che T., Li Y., Jacob A.P., Bengio Y., Li W. Mode Regularized Generative Adversarial Networks. 2017. ArXiv Prepr. arXiv:1612.02136. https://doi.org/10.48550/arXiv.1612.02136
60. Bao J., Chen D., Wen F., Li H., Hua G. CVAE-GAN: Fine-Grained Image Generation Through Asymmetric Training. Presented at the Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017. P. 2745–2754. Available from URL: https://openaccess.thecvf.com/content_iccv_2017/html/Bao_CVAE-GAN_Fine-Grained_Image_ICCV_2017_paper.html
61. Westerlund M. The emergence of deepfake technology: A review. Technol. Innov. Manag. Rev. 2019;9(11):39–52.
62. Tolosana R., Vera-Rodriguez R., Fierrez J., Morales A., Ortega-Garcia J. Deepfakes and beyond: A survey of face manipulation and fake detection. Inf. Fusion. 2020;64:131–148. https://doi.org/10.1016/j.inffus.2020.06.014
63. Zhao J. Energy-based Generative Adversarial Network. 2016. ArXiv Prepr. arXiv:1609.03126. https://doi.org/10.48550/arXiv.1609.03126
64. Reed S., Akata Z., Yan X., Logeswaran L., Schiele B., Lee H. Generative adversarial text to image synthesis. In: Proceedings of the 33th International Conference on Machine Learning. PMLR. 2016. P. 1060–1069. Available from URL: http://proceedings.mlr.press/v48/reed16.html
65. Lloyd S., Weedbrook C. Quantum Generative Adversarial Learning. Phys. Rev. Lett. 2018;121(4):040502. https://doi.org/10.1103/PhysRevLett.121.040502
66. Gulrajani I., Ahmed F., Arjovsky M., Dumoulin V., Courville A.C. Improved training of wasserstein gans. Adv. Neural Inf. Process. Syst. 2017;30. Available from URL: https://proceedings.neurips.cc/paper/2017/hash/892c3b1c6dccd52936e27cbd0ff683d6-Abstract.html
67. Park T., Liu M.-Y., Wang T.-C., Zhu J.-Y. Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. P. 2337–2346. Available from URL: http://openaccess.thecvf.com/content_CVPR_2019/html/Park_Semantic_Image_Synthesis_With_Spatially-Adaptive_Normalization_CVPR_2019_paper.html
68. Hoang Q., Nguyen T.D., Le T., Phung D. MGAN: Training Generative Adversarial Nets with Multiple Generators. 2018.
69. Hitaj B., Gasti P., Ateniese G., Perez-Cruz F. PassGAN: A Deep Learning Approach for Password Guessing. 2019. ArXiv Prepr. arXiv:1709.00440. https://doi.org/10.48550/arXiv.1709.00440
70. Sharma Y., Ding G.W., Brubaker M. On the Effectiveness of Low Frequency Perturbations. 2019. ArXiv Prepr. arXiv:1903.00073. https://doi.org/10.48550/arXiv.1903.00073
71. Zhang C., Yu S., Tian Z., Yu J.J.Q. Generative Adversarial Networks: A Survey on Attack and Defense Perspective. ACM Comput. Surv. 2024;56(4):1–35. https://doi.org/10.1145/3615336
72. Zhang J., Zhao L., Yu K., Min G., Al-Dubai A.Y., Zomaya A.Y. A Novel Federated Learning Scheme for Generative Adversarial Networks. IEEE Trans. Mob. Comput. 2024;23(5):3633–3649. https://doi.org/10.1109/TMC.2023.3278668
73. Kaviani S., Han K.J., Sohn I. Adversarial attacks and defenses on AI in medical imaging informatics: A survey. Expert Syst. Appl. 2022;198:116815. https://doi.org/10.1016/j.eswa.2022.116815
74. Ribeiro M.T., Singh S., Guestrin C. Why Should I Trust You? Explaining the Predictions of Any Classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA. 2016. P. 1135–1144. https://doi.org/10.1145/2939672.2939778
75. Zhang Q., Wu Y.N., Zhu S.-C. Interpretable convolutional neural networks. In: Proceedings of the IEEE/CVPR Conference on Computer Vision and Pattern Recognition. 2018. P. 8827–8836. https://doi.org/10.1109/CVPR.2018.00920
76. Borji A. Pros and Cons of GAN Evaluation Measures. 2018. ArXiv Prepr. arXiv:1802.03446. https://doi.org/10.48550/arXiv.1802.03446
77. Yang Y., Li Y., Zhang W., Qin F., Zhu P., Wang C.-X. Generative-Adversarial-Network-Based Wireless Channel Modeling: Challenges and Opportunities. IEEE Commun. Mag. 2019;57(3):22–27. https://doi.org/10.1109/MCOM.2019.1800635
78. Li T., Zhang S., Xia J. Quantum generative adversarial network: A survey. Comput. Mater. Contin. 2020;64(1):401–438. https://doi.org/10.32604/cmc.2020.010551
79. Zhao S., Liu Z., Lin J., Zhu J.-Y., Han S. Differentiable augmentation for data-efficient GAN training. Adv. Neural Inf. Process. Syst. 2020;33:7559–7570. Available from URL: https://proceedings.neurips.cc/paper/2020/hash/55479c55ebd1efd3ff125f1337100388-Abstract.html
80. Mittelstadt B., Russell C., Wachter S. Explaining Explanations in AI. In: Proceedings of the Conference on Fairness. Accountability. and Transparency. Atlanta, GA, USA. 2019. P. 279–288. https://doi.org/10.1145/3287560.3287574
Review
For citations:
Arafat Z., Yudina O.V., Abdulazeez Z.A. Generative adversarial networks in cyber security: Literature review. Russian Technological Journal. 2025;13(5):7-24. https://doi.org/10.32362/2500-316X-2025-13-5-7-24. EDN: ISXHGA