Preview

Russian Technological Journal

Advanced search

Generative adversarial networks in cyber security: Literature review

https://doi.org/10.32362/2500-316X-2025-13-5-7-24

EDN: ISXHGA

Abstract

Objectives. This review article sets out to evaluate the use of Generative Adversarial Networks (GANs) to revolutionize cybersecurity and anomaly detection process. The research focuses in particular on the capabilities of GANs to produce synthetic data and simulate adversarial attacks, as well as identifying outliers and resolving training, instability, and ethical issues.
Methods. A systematic review of relevant peer-reviewed articles spanning 2014 through 2024 was undertaken.
Results. The discussion concentrated on two main areas of GAN application: (1) cybersecurity through intrusion detection and adversarial testing; (2) anomaly detection for medical diagnostics and surveillance purposes. The research studied two essential GAN variants named Wasserstein GANs and Conditional GANs for their performance in addressing technical challenges. The assessment of synthetic data quality used the Fréchet Inception Distance and Structural Similarity Index Measure as evaluation metrics.
Conclusions. GANs enhance security measures through their production of caused datasets resulting in a 25% improvement of detection systems accuracy. The technique allows strong adversarial assessment to reveal system weaknesses while helping detect irregularities in data-poor areas for medical diagnostics. High-dimensional tasks demonstrate 40% training instability and lead to 30% output diversity loss. The need for regulatory frameworks becomes essential due to ethical issues, which include the use of deepfakes that result in 25% success rates of biometric system evasion. Given ethical rules regulating their proper use, GANs advance cybersecurity by providing anomaly detection simultaneously with improved training stability and lower operating expenses. Prior versions of GAN-reinforcement learning and additional transparent systems require focused development as part of responsible innovation efforts.

About the Authors

Z. Arafat
University of Kerbala
Iraq

Zaid Arafat, Assistant Lecturer, Department of Cybersecurity

Karbala, 56001

Scopus Author ID 57963547500


Competing Interests:

The authors declare no conflicts of interest



O. V. Yudina
Cherepovets State University
Russian Federation

Olga V. Yudina, Cand. Sci. (Eng.), Associate Professor, Department of Mathematics and Computer Software

Cherepovets, 162600


Competing Interests:

The authors declare no conflicts of interest



Z. A. Abdulazeez
University of Kerbala
Iraq

Zainab A. Abdulazeez, Assistant Lecturer, College of Education for Human Sciences

Karbala, 56001

Scopus Author ID 57220186609


Competing Interests:

The authors declare no conflicts of interest



References

1. Goodfellow I., Pouget-Abadie J., Mirza M., et al. Generative adversarial networks. Commun. ACM. 2020;63(11):139–144. https://doi.org/10.1145/3422622

2. Arifin M.M., Ahmed M.S., Ghosh T.K., Udoy I.A., Zhuang J., Yeh J. A Survey on the Application of Generative Adversarial Networks in Cybersecurity: Prospective. Direction and Open Research Scopes. 2024. ArXiv Prepr. arXiv:2407.08839. https://doi.org/10.48550/arXiv.2407.08839

3. Sabuhi M., Zhou M., Bezemer C.-P., Musilek P. Applications of Generative Adversarial Networks in Anomaly Detection: A Systematic Literature Review. IEEE Access. 2021;9:161003–161029. https://doi.org/10.1109/ACCESS.2021.3131949

4. Aggarwal A., Mittal V., Battineni G. Generative adversarial network: An overview of theory and applications. Int. J. Inf. Manag. Data Insights. 2021;1(1):100004. https://doi.org/10.1016/j.jjimei.2020.100004

5. Cao Y.-J., Jia L.-L., Chen Y.-X., et al. Recent Advances of Generative Adversarial Networks in Computer Vision. IEEE Access. 2019;7:14985–15006. https://doi.org/10.1109/ACCESS.2018.2886814

6. Radford A., Metz L., Chintala S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. 2016.ArXiv Prepr. arXiv:1511.06434. https://doi.org/10.48550/arXiv.1511.06434

7. Arjovsky M, Chintala S., Bottou L. Wasserstein generative adversarial networks. In: Proceedings of the International Conference on Machine Learning (ICML). PMLR. 2017. P. 214–223. Available from URL: https://proceedings.mlr.press/v70/arjovsky17a/arjovsky17a.pdf

8. Zhu J.-Y., Park T., Isola P., Efros A.A. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. 2020. ArXiv Prepr. arXiv:1703.10593. https://doi.org/10.48550/arXiv.1703.10593

9. Mirza M., Osindero S. Conditional Generative Adversarial Nets. 2014. ArXiv Prepr. arXiv:1411.1784. https://doi.org/10.48550/arXiv.1411.1784

10. Karras T., Laine S., Aila T. A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019. P. 4401–4410. https://doi.org/10.1109/CVPR.2019.00453

11. Sedjelmaci H. Attacks detection and decision framework based on generative adversarial network approach: Case of vehicular edge computing network. Trans. Emerg. Telecommun. Technol. 2022;33(10):e4073. https://doi.org/10.1002/ett.4073

12. Kumaran U., Thangam S., Prabhakar T.N., Selvaganesan J., Vishwas H.N. Adversarial Defense: A GAN-IF Based Cybersecurity Model for Intrusion Detection in Software Piracy. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 2023;14(4):96–114. http://doi.org/10.58346/JOWUA.2023.I4.008

13. Haloui I., Gupta J.S., Feuillard V. Anomaly detection with Wasserstein GAN. 2018. ArXiv Prepr. arXiv:1812.02463. https://doi.org/10.48550/arXiv.1812.02463

14. Kimura D., Chaudhury S., Narita M., Munawar A., Tachibana R. Adversarial Discriminative Attention for Robust Anomaly Detection. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE; 2020. P. 2161–2170. https://doi.org/10.1109/WACV45572.2020.9093428

15. Dunmore A., Jang-Jaccard J., Sabrina F., Kwak J. A Comprehensive Survey of Generative Adversarial Networks (GANs) in Cybersecurity Intrusion Detection. IEEE Access. 2023;11:76071–76094. https://doi.org/10.1109/ACCESS.2023.3296707

16. Kos J., Fischer I., Song D. Adversarial examples for generative models. 2017. ArXiv Prepr. arXiv:1702.06832. https://doi.org/10.48550/arXiv.1702.06832

17. Chhetri S.R., Lopez A.B., Wan J., Al Faruque M.A. GAN-Sec: Generative Adversarial Network Modeling for the Security Analysis of Cyber-Physical Production Systems. In: 2019 Design. Automation & Test in Europe Conference & Exhibition (DATE). IEEE; 2019. P. 770–775. https://doi.org/10.23919/DATE.2019.8715283

18. Mao X., Li Q., Xie H., et al. Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017. P. 2794–2802. https://doi.org/10.1109/ICCV.2017.304

19. Nataraj L., Karthikeyan S., Jacob G., Manjunath B.S. Malware images: visualization and automatic classification. In: Proceedings of the 8th International Symposium on Visualization for Cyber Security. 2011. P. 1–7. https://doi.org/10.1145/2016904.2016908

20. Chen X., Duan Y., Houthooft R., et al. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems (NeurIPS). 2016;29:2172–2180.

21. Alo S.O., Jamil A.S., Hussein M.J., Al-Dulaimi M.K.H., Taha S.W., Khlaponina A. Automated Detection of Cybersecurity Threats Using Generative Adversarial Networks (GANs). In: 2024 36th Conference of Open Innovations Association (FRUCT). IEEE. 2024. P. 566–577. https://doi.org/10.23919/FRUCT64283.2024.10749874

22. Zhang J., Li C. Adversarial examples: Opportunities and challenges. IEEE Trans. Neural Netw. Learn. Syst. 2019;31(7): 2578–2593. https://doi.org/10.1109/TNNLS.2019.2933524

23. Zhang S., Xie X., Xu Y. A Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity. IEEE Access. 2020;8:128250–128263. https://doi.org/10.1109/ACCESS.2020.3008433

24. Papernot N., McDaniel P., Goodfellow I., Jha S., Celik Z.B., Swami A. Practical Black-Box Attacks against Machine Learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. ACM. 2017. P. 506–519. https://doi.org/10.1145/3052973.3053009

25. Kurakin A., Goodfellow I.J., Bengio S. Adversarial examples in the physical world. In book: Artificial Intelligence Safety and Security. Chapman and Hall/CRC. 2018. P. 99–112. https://doi.org/10.1201/9781351251389, Available from URL: https://www.taylorfrancis.com/chapters/edit/10.1201/9781351251389-8/adversarial-examples-physical-world-alexeykurakin-ian-goodfellow-samy-bengio

26. Taheri S., Khormali A., Salem M., Yuan J.-S. Developing a robust defensive system against adversarial examples using generative adversarial networks. Big Data Cogn. Comput. 2020;4(2):11. https://doi.org/10.3390/bdcc4020011

27. Carlini N., Wagner D. Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP). IEEE. 2017. P. 39–57. https://doi.org/10.1109/SP.2017.49

28. Madry A., Makelov A., Schmidt L., Tsipras D., Vladu A. Towards Deep Learning Models Resistant to Adversarial Attacks. 2019. ArXiv Prepr. arXiv:1706.06083. https://doi.org/10.48550/arXiv.1706.06083

29. Sharif M., Bhagavatula S., Bauer L., Reiter M.K. Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM. 2016. P. 1528–1540. https://doi.org/10.1145/2976749.2978392

30. Akhtar N., Mian A. Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access. 2018;6: 14410–14430. https://doi.org/10.1109/ACCESS.2018.2807385

31. Dong Y., Pang T., Su H., Zhu J. Evading defenses to transferable adversarial examples by translation-invariant attacks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. P. 4312–4321. Available from URL: http://openaccess.thecvf.com/content_CVPR_2019/html/Dong_Evading_Defenses_to_Transferable_Adversarial_Examples_by_Translation-Invariant_Attacks_CVPR_2019_paper.html

32. Shafahi A., Najibi M., Ghiasi A., et al. Adversarial training for free! Adv. Neural Inf. Process. Syst. 2019:32. Available from URL: https://proceedings.neurips.cc/paper/by-source-2019-1853

33. Xiao C., Li B., Zhu J., He W., Liu M., Song D. Generating Adversarial Examples with Adversarial Networks. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization. 2018. P. 3905–3911. https://doi.org/10.24963/ijcai.2018/543

34. Hou T., Wang T., Lu Z., Liu Y., Sagduyu Y. IoTGAN: GAN powered camouflage against machine learning based IoT device identification. In: 2021 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE. 2021. P. 280–287. https://doi.org/10.1109/DySPAN53946.2021.9677264

35. Kurakin A., Goodfellow I., Bengio S. Adversarial examples in the physical world. 2017. ArXiv Prepr. arXiv:1607.02533. https://doi.org/10.48550/arXiv.1607.02533.

36. Goodfellow I., Pouget-Abadie J., Mirza M., et al. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014;27. Available from URL: https://proceedings.neurips.cc/paper/5423-generative-adversarial-nets

37. Bengio Y. Learning Deep Architectures for AI. Found. Trends® Mach. Learn. 2009;2(1):1–127. https://doi.org/10.1561/2200000006

38. Isola P., Zhu J.-Y., Zhou T., Efros A.A. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. P. 1125–1134. Available from URL: http://openaccess.thecvf.com/content_cvpr_2017/html/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.html

39. Salimans T., Goodfellow I., Zaremba W., et al. Improved techniques for training GANs. In: Adv. Neural Inf. Process. Syst. (NeurIPS). 2016;29. Available from URL: https://proceedings.neurips.cc/paper_files/paper/2016/hash/8a3363abe792db2d8761d6403605aeb7-Abstract.html

40. Arjovsky M., Bottou L. Towards Principled Methods for Training Generative Adversarial Networks. 2017. ArXiv Prepr. arXiv:1701.04862. https://doi.org/10.48550/arXiv.1701.04862

41. Ho J., Ermon S. Generative adversarial imitation learning. Adv. Neural Inf. Process. Syst. (NeurIPS). 2016;29. Available from URL: https://papers.nips.cc/paper_files/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html

42. Mittal S., Joshi A., Finin T. Cyber-All-Intel: An AI for Security related Threat Intelligence. 2019. ArXiv Prepr. arXiv:1905.02895. https://doi.org/10.48550/arXiv.1905.02895

43. Yinka-Banjo C., Ugot O.-A. A review of generative adversarial networks and its application in cybersecurity. Artif. Intell. Rev. 2020;53(3):1721–1736. https://doi.org/10.1007/s10462-019-09717-4

44. Yan Q., Wang M., Huang W., Luo X., Yu F.R. Automatically synthesizing DoS attack traces using generative adversarial networks. Int. J. Mach. Learn. Cybern. 2019;10(12):3387–3396. https://doi.org/10.1007/s13042-019-00925-6

45. Goodfellow I.J., Pouget-Abadie M., Mirza M., et al. Generative adversarial nets. Adv. Neural Inf. Process. Syst. (NeurIPS). 2014;27. Available from URL: https://papers.nips.cc/paper_files/paper/2014/hash/f033ed80deb0234979a61f95710dbe25-Abstract.html

46. Choi Y., Choi M., Kim M., Ha J.-W., Kim S., Choo J. StarGAN: Unified Generative Adversarial Networks for Multi-domain Image-to-Image Translation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE. 2018. P. 8789–8797. https://doi.org/10.1109/CVPR.2018.00916

47. Karras T., Aila T., Laine S., Lehtinen J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. In: International Conference on Learning Representations. 2018. Available from URL: https://research.aalto.fi/en/publications/progressive-growing-of-gans-for-improved-quality-stability-and-va

48. Brock A., Donahue J., Simonyan K. Large Scale GAN Training for High Fidelity Natural Image Synthesis. In: International Conference on Learning Representations. 2018. https://doi.org/10.48550/arXiv.1809.11096

49. Wang T.-C., Liu M.-Y., Zhu J.-Y., Tao A., Kautz J., Catanzaro B. High-resolution image synthesis and semantic manipulation with conditional gans. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018. P. 8798–8807. Available from URL: http://openaccess.thecvf.com/content_cvpr_2018/html/Wang_High-Resolution_Image_Synthesis_CVPR_2018_paper.html

50. Li C., Wand M. Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks. In: Leibe B., Matas J., Sebe N., Welling M. (Eds.). Computer Vision – ECCV 2016. Series: Lecture Notes in Computer Science. Cham: Springer; 2016. V. 9907. P. 702–716. https://doi.org/10.1007/978-3-319-46487-9_43

51. Mirsky Y., Lee W. The Creation and Detection of Deepfakes: A Survey. ACM Comput. Surv. Jan. 2022;54(1):1–41. https://doi.org/10.1145/3425780

52. Odena A., Olah C., Shlens J. Conditional image synthesis with auxiliary classifier GANs. In: Proceedings of the 34th International Conference on Machine Learning (ICML). PMLR. 2017. P. 2642–2651. Available from URL: https://proceedings.mlr.press/v70/odena17a.html

53. Wang Z., She Q., Ward T.E. Generative Adversarial Networks in Computer Vision: A Survey and Taxonomy. ACM Comput. Surv. 2022;54(2):1–38. https://doi.org/10.1145/3439723

54. Creswell A., White T., Dumoulin V., Arulkumaran K., Sengupta B., Bharath A.A. Generative Adversarial Networks: An Overview. IEEE Signal Process. Mag. 2018;35(1):53–65. https://doi.org/10.1109/MSP.2017.2765202

55. Zhang H., Goodfellow I., Metaxas L., et al. Self-attention generative adversarial networks. In: Proceedings of the 36th International Conference on Machine Learning (ICML). PMLR. 2019. P. 7354–7363. Available from URL: https://proceedings.mlr.press/v97/zhang19d.html

56. Lucic M., Kurach K., Michalski M., Gelly S., Bousquet O. Are gans created equal? A large-scale study. Adv. Neural Inf. Process. Syst. (NeurIPS) 2018;31. Available from URL: https://proceedings.neurips.cc/paper/2018/hash/e46de7e1bcaaced9a54f1e9d0d2f800d-Abstract.html

57. Sun H., Zhu T., Zhang Z., Xiong D.J.P., Zhou W. Adversarial Attacks Against Deep Generative Models on Data: A Survey. IEEE Trans. Knowl. Data Eng. 2023;35(4):3367–3388. https://doi.org/10.1109/TKDE.2021.3130903

58. Miyato T., Kataoka T., Koyama M., Yoshida Y. Spectral Normalization for Generative Adversarial Networks. 2018. ArXiv Prepr. arXiv:1802.05957. https://doi.org/10.48550/arXiv.1802.05957

59. Che T., Li Y., Jacob A.P., Bengio Y., Li W. Mode Regularized Generative Adversarial Networks. 2017. ArXiv Prepr. arXiv:1612.02136. https://doi.org/10.48550/arXiv.1612.02136

60. Bao J., Chen D., Wen F., Li H., Hua G. CVAE-GAN: Fine-Grained Image Generation Through Asymmetric Training. Presented at the Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017. P. 2745–2754. Available from URL: https://openaccess.thecvf.com/content_iccv_2017/html/Bao_CVAE-GAN_Fine-Grained_Image_ICCV_2017_paper.html

61. Westerlund M. The emergence of deepfake technology: A review. Technol. Innov. Manag. Rev. 2019;9(11):39–52.

62. Tolosana R., Vera-Rodriguez R., Fierrez J., Morales A., Ortega-Garcia J. Deepfakes and beyond: A survey of face manipulation and fake detection. Inf. Fusion. 2020;64:131–148. https://doi.org/10.1016/j.inffus.2020.06.014

63. Zhao J. Energy-based Generative Adversarial Network. 2016. ArXiv Prepr. arXiv:1609.03126. https://doi.org/10.48550/arXiv.1609.03126

64. Reed S., Akata Z., Yan X., Logeswaran L., Schiele B., Lee H. Generative adversarial text to image synthesis. In: Proceedings of the 33th International Conference on Machine Learning. PMLR. 2016. P. 1060–1069. Available from URL: http://proceedings.mlr.press/v48/reed16.html

65. Lloyd S., Weedbrook C. Quantum Generative Adversarial Learning. Phys. Rev. Lett. 2018;121(4):040502. https://doi.org/10.1103/PhysRevLett.121.040502

66. Gulrajani I., Ahmed F., Arjovsky M., Dumoulin V., Courville A.C. Improved training of wasserstein gans. Adv. Neural Inf. Process. Syst. 2017;30. Available from URL: https://proceedings.neurips.cc/paper/2017/hash/892c3b1c6dccd52936e27cbd0ff683d6-Abstract.html

67. Park T., Liu M.-Y., Wang T.-C., Zhu J.-Y. Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. P. 2337–2346. Available from URL: http://openaccess.thecvf.com/content_CVPR_2019/html/Park_Semantic_Image_Synthesis_With_Spatially-Adaptive_Normalization_CVPR_2019_paper.html

68. Hoang Q., Nguyen T.D., Le T., Phung D. MGAN: Training Generative Adversarial Nets with Multiple Generators. 2018.

69. Hitaj B., Gasti P., Ateniese G., Perez-Cruz F. PassGAN: A Deep Learning Approach for Password Guessing. 2019. ArXiv Prepr. arXiv:1709.00440. https://doi.org/10.48550/arXiv.1709.00440

70. Sharma Y., Ding G.W., Brubaker M. On the Effectiveness of Low Frequency Perturbations. 2019. ArXiv Prepr. arXiv:1903.00073. https://doi.org/10.48550/arXiv.1903.00073

71. Zhang C., Yu S., Tian Z., Yu J.J.Q. Generative Adversarial Networks: A Survey on Attack and Defense Perspective. ACM Comput. Surv. 2024;56(4):1–35. https://doi.org/10.1145/3615336

72. Zhang J., Zhao L., Yu K., Min G., Al-Dubai A.Y., Zomaya A.Y. A Novel Federated Learning Scheme for Generative Adversarial Networks. IEEE Trans. Mob. Comput. 2024;23(5):3633–3649. https://doi.org/10.1109/TMC.2023.3278668

73. Kaviani S., Han K.J., Sohn I. Adversarial attacks and defenses on AI in medical imaging informatics: A survey. Expert Syst. Appl. 2022;198:116815. https://doi.org/10.1016/j.eswa.2022.116815

74. Ribeiro M.T., Singh S., Guestrin C. Why Should I Trust You? Explaining the Predictions of Any Classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA. 2016. P. 1135–1144. https://doi.org/10.1145/2939672.2939778

75. Zhang Q., Wu Y.N., Zhu S.-C. Interpretable convolutional neural networks. In: Proceedings of the IEEE/CVPR Conference on Computer Vision and Pattern Recognition. 2018. P. 8827–8836. https://doi.org/10.1109/CVPR.2018.00920

76. Borji A. Pros and Cons of GAN Evaluation Measures. 2018. ArXiv Prepr. arXiv:1802.03446. https://doi.org/10.48550/arXiv.1802.03446

77. Yang Y., Li Y., Zhang W., Qin F., Zhu P., Wang C.-X. Generative-Adversarial-Network-Based Wireless Channel Modeling: Challenges and Opportunities. IEEE Commun. Mag. 2019;57(3):22–27. https://doi.org/10.1109/MCOM.2019.1800635

78. Li T., Zhang S., Xia J. Quantum generative adversarial network: A survey. Comput. Mater. Contin. 2020;64(1):401–438. https://doi.org/10.32604/cmc.2020.010551

79. Zhao S., Liu Z., Lin J., Zhu J.-Y., Han S. Differentiable augmentation for data-efficient GAN training. Adv. Neural Inf. Process. Syst. 2020;33:7559–7570. Available from URL: https://proceedings.neurips.cc/paper/2020/hash/55479c55ebd1efd3ff125f1337100388-Abstract.html

80. Mittelstadt B., Russell C., Wachter S. Explaining Explanations in AI. In: Proceedings of the Conference on Fairness. Accountability. and Transparency. Atlanta, GA, USA. 2019. P. 279–288. https://doi.org/10.1145/3287560.3287574


Review

For citations:


Arafat Z., Yudina O.V., Abdulazeez Z.A. Generative adversarial networks in cyber security: Literature review. Russian Technological Journal. 2025;13(5):7-24. https://doi.org/10.32362/2500-316X-2025-13-5-7-24. EDN: ISXHGA

Views: 34


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)