Modern optimization methods and their application features
https://doi.org/10.32362/2500-316X-2025-13-4-78-94
EDN: CVZOXD
Abstract
Objectives. The authors conduct an analytical review of available optimization methods and simulation tools to identify their key features, effectiveness, and possible applications. The aim was to form an integrated picture of modern approaches, which may facilitate decision making when selecting the most appropriate method for a particular task. The key objective was to review and classify various optimization tools, which of theoretical and practical value for developers of new models.
Methods. Scientific publications and analytical materials were retrieved from specialized databases and technical documentation libraries.
Results. The analysis and classification of existing optimization methods allowed the authors to identify their advantages, disadvantages, and application features, as well as to determine the relationship between theoretical concepts and their practical implementation. During the analysis, various optimization approaches were considered, covering both classical and modern simulation methods.
Conclusions. The importance of informed selection of optimization methods, which raise the efficiency and accuracy of simulation procedures, is highlighted. The results obtained indicate the need for further study and comparative analysis of the methods used in practice in order to establish their efficiency and applicability in various scenarios. Future research directions include experimental testing of the effectiveness of various approaches based on several models in order to determine their advantages and disadvantages for a more informed selection of the method suitable for a particular task.
Keywords
About the Authors
Salbek M. BeketovRussian Federation
Salbek M. Beketov, Analyst, Laboratory of Digital Modeling of Industrial Systems
29, Politekhnicheskayaul., St.Petersburg, 195251
ResearcherID KAM-0488-2024
Competing Interests:
The authors declare no conflicts of interest
Daria A. Zubkova
Russian Federation
Daria A. Zubkova, Junior Researcher, Laboratory of Digital Modeling of Industrial Systems
29, Politekhnicheskaya ul., St. Petersburg, 195251
Scopus Author ID 58045650200
Competing Interests:
The authors declare no conflicts of interest
Aleksei M. Gintciak
Russian Federation
Aleksei M. Gintciak, Cand. Sci. (Eng.), Head of the Laboratory of Digital Modeling of Industrial Systems
29, Politekhnicheskaya ul., St. Petersburg, 195251
Scopus Author ID 57203897426
ResearcherID W-8013-2019
Competing Interests:
The authors declare no conflicts of interest
Zhanna V. Burlutskaya
Russian Federation
Zhanna V. Burlutskaya, Junior Researcher, Laboratory of Digital Modeling of Industrial Systems
29, Politekhnicheskaya ul., St. Petersburg, 195251
Scopus Author ID 57645600200
ResearcherID AGC-6277-2022
Competing Interests:
The authors declare no conflicts of interest
Sergey G. Redko
Russian Federation
Sergey G. Redko, Director of the Higher School of Project Management and Innovation in Industry
29, Politekhnicheskaya ul., St. Petersburg, 195251
Scopus Author ID 57211475098
Competing Interests:
The authors declare no conflicts of interest
References
1. Kosmacheva I.M., Davidyuk N.V., Sibikina I.V., Kuchin I.Yu. The model for evaluating the effectiveness of an information security system configuration based on genetic algorithms. Modelirovanie, optimizatsiya i informatsionnye tekhnologii = Modeling, Optimization and Information Technology. 2020;8(3):40–41 (in Russ.). https://doi.org/10.26102/2310-6018/2020.30.3.022
2. Beketov S.M., Pospelov K.N., Redko S.G. A human capital simulation model in innovation projects. Control Sci. 2024;3: 16–25. http://doi.org/10.25728/cs.2024.3. [Original Russian Text: Beketov S.M., Pospelov K.N., Redko S.G. A human capital simulation model in innovation projects. Problemy upravleniya. 2024;3:20–31 (in Russ.). http://doi.org/10.25728/pu.2024.3.2 ]
3. Kenden K.V., Kuznetsov A.V. Particle swarm optimisation for the structure of an autonomous solar energy complex. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta = Proceedings of Irkutsk State Technical University. 2020;24(3):616–626 (in Russ.). https://doi.org/10.21285/1814-3520-2020-3-616-626
4. Filippova K.A., Redko S.G. The use of the simulation modeling method in a medical institution in order to optimize the movement of patients under the constraints of the COVID-19 pandemic. Voprosy ustoichivogo razvitiya obshchestva. 2023:(4 MKVG) (in Russ.). https://doi.org/10.34755/IROK.2022.61.82.009
5. Van Thieu N., Mirjalili S. MEALPY: An open-source library for latest meta-heuristic algorithms in Python. J. Syst.Architecture. 2023;139:102871. https://doi.org/10.1016/j.sysarc.2023.102871
6. Dalavi A.M., Gomes A., Husain A.J. Bibliometric analysis of nature inspired optimization techniques. Comput. Ind. Eng. 2022;169:108161. https://doi.org/10.1016/j.cie.2022.108161
7. Nagpal A., Gabrani G. Python for data analytics, scientific and technical applications. In: 2019 Amity International Conference on Artificial Intelligence (AICAI). IEEE; 2019. P. 140–145. https://doi.org/10.1109/AICAI.2019.8701341
8. Gintciak A.M., Bolsunovskaya M.V., Burlutskaya Z.V., Petryaeva A.A. Hybrid Simulation as a Key Tool for Socio-economic Systems Modeling. In: Vasiliev Y.S., Pankratova N.D., Volkova V.N., Shipunova O.D., Lyabakh N.N. (Eds.). System Analysis in Engineering and Control. Book Series: Lecture Notes in Networks and Systems. Springer; 2022. V. 442. P. 262–272. https://doi.org/10.1007/978-3-030-98832-6_23
9. Nikolaev S.V. Multidimensional and systematic digital transformation: sustainable development on the example of the transport industry. E-Management. 2023;6(3):39–50 (in Russ.). https://doi.org/10.26425/2658-3445-2023-6-3-39-50
10. Lychkina N. Modelling of Developing Socio-economic Systems Using Multiparadigm Simulation Modelling: Advancing Towards Complexity Theory and Synergetics. In: Perko I., Espejo R., Lepskiy V., Novikov D.A. (Eds.). World Organization of Systems and Cybernetics 18. Congress-WOSC2021. Book Series: Lecture Notes in Networks and Systems. Springer; 2022. V. 495. P. 191–204. https://doi.org/10.1007/978-3-031-08195-8_19
11. Pevneva A.G., Kalinkina M.E. Metody optimizatsii (Optimization Methods). St. Petersburg: ITMO University; 2022. 64 p. (in Russ.).
12. Ciufolini I., Paolozzi A. Mathematical prediction of the time evolution of the COVID-19 pandemic in Italy by a Gauss error function and Monte Carlo simulations. Eur. Phys. J. Plus. 2020;135(4):355. https://doi.org/10.1140/epjp/s13360-020-00383-y
13. Kannan D., Moazzeni S., Darmian S.M. A hybrid approach based on MCDM methods and Monte Carlo simulation for sustainable evaluation of potential solar sites in east of Iran. J. Clean. Product. 2021;279:122368. https://doi.org/10.1016/j.jclepro.2020.122368
14. Xue H., Shen X., Pan W. Constrained maximum likelihood-based Mendelian randomization robust to both correlated and uncorrelated pleiotropic effects. Am. J. Human Genet. 2021;108(7):1251–1269. https://doi.org/10.1016/j.ajhg.2021.05.014
15. Lomivorotov R.V. The use of Bayesian methods for the analysis of monetary policy in Russia. Prikladnaya ekonometrika = Applied Econometrics. 2015;38(2):41–63 (in Russ.).
16. Scheglevatych R.V., Sysoev A.S. Mathematical model to detect anomalies using Sensitivity Analysis applying to neural network. Modelirovanie, optimizatsiya i informatsionnye tekhnologii = Modeling, Optimization and Information Technology. 2022;8(1):14 (in Russ.). https://doi.org/10.26102/2310-6018/2020.28.1.020
17. Manashirov E.S. Theoretical framework of a planned economy and taxation: analysis of the effect on the middle class and optimization of tax schemes. Innovatsii i investitsii = Innovations and Investments. 2023;10:272–276 (in Russ.).
18. Vasileva E.V., Gromova A.A., Vishnevskaya N.A. Machine learning model for optimizing the organization of work of office employees in remote and hybrid modes. Innovatsii i investitsii = Innovations and Investments. 2023;5:288–295 (in Russ.).
19. Glotov A.F. Nachala matematicheskogo modelirovaniya v elektronike (Beginnings of MAthematical Modeling in Electronics). Tomsk: Tomsk Polytechnic University; 2017. 363 p. (in Russ.).
20. Goryunov O.V., Kurikov N.N., Egorov K.A. Interpolation method to evaluate the possibility of failure in case of complex load. Trudy NGTU im. R.E. Alekseeva = Transactions of NNSTU n.a. R.E. Alekseev. 2023;1(140):42–52 (in Russ.).
21. Ruiz-Arias J.A. Mean-preserving interpolation with splines for solar radiation modeling. Solar Energy. 2022;248:121–127. https://doi.org/10.1016/j.solener.2022.10.038
22. Bourguignon S., Ninin J., Carfantan H., Mongeau M. Exact sparse approximation problems via mixed-integer programming: Formulations and computational performance. IEEE Trans. Signal Process. 2015;64(6):1405–1419. https://doi.org/10.1109/TSP.2015.2496367
23. Ponz‐Tienda J.L., Salcedo‐Bernal A., Pellicer E. A parallel branch and bound algorithm for the resource leveling problem with minimal lags. Comput. Aided Civil Infrastruct. Eng. 2017;32(6):474–498. https://doi.org/10.1111/mice.12233
24. Bertsimas D., Tsitsiklis J.N. Integer programming methods. In: Introduction to Linear Optimization. Belmont, MA: Athena Scientific; 1997. V. 6. P. 479–530.
25. Bolusani S., Ralphs T.K. A framework for generalized Benders’ decomposition and its application to multilevel optimization. Math. Program. 2022;196(1):389–426. https://doi.org/10.1007/s10107-021-01763-7
26. Kleinert T., Labbé M., Ljubić I., Schmidt M. A survey on mixed-integer programming techniques in bilevel optimization. EURO J. Computational Opt. 2021;9(2):100007. https://doi.org/10.1016/j.ejco.2021.100007
27. Kondratov D.V., Volodin D.N. Mathematical modeling of machine learning algorithms. Matematicheskoe modelirovanie, komp’yuternyi i naturnyi eksperiment v estestvennykh naukakh. 2023;2:2–7 (in Russ.). https://doi.org/10.24412/2541-9269-2023-2-02-07
28. Sprague C.I., Ögren P. Continuous-time behavior trees as discontinuous dynamical systems. IEEE Control Syst. Lett. 2021;6:1891–1896. https://doi.org/10.1109/LCSYS.2021.3134453
29. Phiri D., Simwanda M., Nyirenda V.R., et al. Decision tree algorithms for developing rulesets for object-based land cover classification. ISPRS Int. J. Geo-Inf. 2020;9(5):329. https://doi.org/10.3390/ijgi9050329
30. Belozerov S., Sokolovskaya E. The game-theoretic approach to modeling the conflict of interests: The economic sanctions. Terra Economicus. 2022;20(1):65–80 (in Russ.). http://doi.org/10.18522/2073-6606-2022-20-1-65-80
31. Petrichenko D.G., Petrichenko G.S. Solving real estate situational problems in conditions of uncertainty. Vestnik Akademii znanii = Bulletin of the Academy of Knowledge. 2023;54(1):400–405 (in Russ.).
32. Makarov V.L., Bakhtizin A.R., Beklaryan G.L., Akopov A.S. Digital plant: methods of discrete-event modeling and optimization of production characteristics. Biznes-informatika = Business Informatics. 2021;15(2):7–20 (in Russ.). http://doi.org/10.17323/2587-814X.2021.2.7.20
33. Bolsunovskaya M.V., Gintsyak A.M., Burlutskaya Zh.V., Petryaeva A.A., Zubkova D.A., Uspenskii M.B., Seledtsova I.A. The opportunities of using a hybrid approach for modeling socio-economic and sociotechnical systems. Vestnik VGU. Seriya: Sistemnyi analiz i informatsionnye tekhnologii = Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies. 2022.;3:73–86 (in Russ.). https://doi.org/10.17308/sait/1995-5499/2022/3/73-86
34. Ahmad M.F., Isa N.A.M., Lim W.H., Ang K.M. Differential evolution: A recent review based on state-of-the-art works. Alexandria Eng. J. 2022;61(5):3831–3872. https://doi.org/10.1016/j.aej.2021.09.013
35. Holodkov D.V. Analysis of features of application of genetic algorithms. Vestnik nauki. 2024;4(4–73):678–682 (in Russ.).
36. Albadr M.A., Tiun S., Al-Dhief F.T., Ayob M. Genetic algorithm based on natural selection theory for optimization problems. Symmetry. 2020;12(11):1758. https://doi.org/10.3390/sym12111758
37. Kostin A.S., Maiorov N.N. Research of models and methods for routing and practical implementation of autonomous movement by unmanned transport systems for cargo delivery. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S.O. Makarova. 2023;15(3):524–536 (in Russ.). https://doi.org/10.21821/2309-5180-2023-15-3-524-536
38. Slovokhotov Yu.L., Novikov D.A. Distributed intelligence of multi-agent systems. Part II: Collective intelligence of social systems. Control Sci. 2023;6:2–17. https://doi.org/10.25728/cs.2023.6.1 [Original Russian Text: Slovokhotov Yu.L., Novikov D.A. Distributed intelligence of multi-agent systems. Part II: Collective intelligence of social systems. Problemy upravleniya. 2023;6:3–21 (in Russ.). https://doi.org/10.25728/pu.2023.6.1 ]
39. Gad A.G. Particle swarm optimization algorithm and its applications: a systematic review. Arch. Computat. Methods Eng. 2022;29(5):2531–2561. https://doi.org/10.1007/s11831-021-09694-4
40. Kuliev E.V., Zaporozhets D.Yu., Kravchenko Yu.A., Semenova M.M. Solution of the problem of intellectual data analysis based on bioinspired algorithm. Izvestiya Yuzhnogo federal’nogo universiteta. Tekhnicheskie nauki = Izvestiya SFedU. Engineering sciences. 2021;6(223):89–99 (in Russ.). https://doi.org/10.18522/2311-3103-2021-6-89-99
41. Dorigo M., Stützle T. Ant colony optimization: overview and recent advances. In book: Gendreau M., Potvin J.Y. (Eds.). Handbook of Metaheuristics. International Series in Operations Research & Management Science. Springer; 2019. P. 311–351. https://doi.org/10.1007/978-1-4419-1665-5_8
42. Kureychik V.V., Rodzin S.I. Computational models of evolutionary and swarm bio heuristics (Review). Informatsionnye tekhnologii = Information Technologies. 2021;27(1):507–520 (in Russ.). https://doi.org/10.17587/it.27.507-520
43. Almufti S.M., Alkurdi A.A.H., Khoursheed E.A. Artificial Bee Colony Algorithm Performances in Solving Constraint-Based Optimization Problem. Telematique. 2022;21(1):6785–6799.
44. Lee J., Perkins D. A simulated annealing algorithm with a dual perturbation method for clustering. Pattern Recogn. 2021;112:107713. https://doi.org/10.1016/j.patcog.2020.107713
Review
For citations:
Beketov S.M., Zubkova D.A., Gintciak A.M., Burlutskaya Zh.V., Redko S.G. Modern optimization methods and their application features. Russian Technological Journal. 2025;13(4):78-94. https://doi.org/10.32362/2500-316X-2025-13-4-78-94. EDN: CVZOXD