Preview

Russian Technological Journal

Advanced search

Expanding the capabilities of new magnetometers of ponderomotive and magnetic-rheological types with hemispherical poles

https://doi.org/10.32362/2500-316X-2025-13-4-55-68

EDN: PEJBLG

Abstract

Objectives. The work sets out to explain the expanded capabilities of new magnetometers by conducting appropriate studies. In order to determine the magnetic susceptibility of small-volume objects, ponderomotive and magnetic-rheological magnetometers with hemispherical pole pieces are used to create the magnetic field required for a limited working zone.

Methods. The research is carried out using an original method, which includes finding the coordinate characteristic of the induction of the field B through direct step-by-step measurements by the Hall sensor in the interpolar space along the line of action of the ponderomotive force to provide a basis for obtaining the coordinate characteristic of the gradient.

Results. In magnetometers using hemispherical poles of increased diameter D: 157 and 184 mm, mutually disconnected from one or another by the distance b, the desired key dependencies of magnetic induction B were experimentally obtained (with a step-by-step distance x from the center of symmetry of the interpolar space along the line of action ofthe ponderomotive force) to provide the dependence ofthe gradient gradB= dB/dx. The characteristic inflection of each of the curves B from x and corresponding individual extremum of the following curves dB/dx from x, in the vicinity of which the values of dB/dx are practically stable, meets the requirement of determining the dislocation of the executive (working) zone such that the inhomogeneity of the field is almost constant.

Conclusions. Coordinates of executive zone dislocation are obtained from established and generalized dependencies B from x and dB/dx from x. To calculate these coordinates, which depend on D and b but do not depend on the magnetizing force of the winding, the corresponding analytical (phenomenological) expressions of power and logarithmic form are obtained. The possibility of using these expressions to identify the executive zone of magnetometers without resorting to additional series of experiments is shown. The expediency of using hemispherical pole pieces of increased diameter is also demonstrated. On this basis, the length of the executive zone can be increased to conduct studies with samples of a wider range of sizes.

About the Authors

Мaria N. Polismakova
MIREA – Russian Technological University
Russian Federation

Maria N. Polismakova, Cand. Sci. (Eng.), Associate Professor, Department of Devices and InformationMeasuring Systems, Institute for Cybersecurity and Digital Technologies

78, Vernadskogo pr., Moscow, 119454 

ResearcherID O-8796-2017


Competing Interests:

The authors declare no conflicts of interest



Daria A. Sandulyak
MIREA – Russian Technological University
Russian Federation

Daria A. Sandulyak, Cand. Sci. (Eng.), Associate Professor, Department of Devices and Information-Measuring Systems, Institute for Cybersecurity and Digital Technologies

78, Vernadskogo pr., Moscow, 119454

Scopus Author ID 36621369400

ResearcherID L-9814-2016,


Competing Interests:

The authors declare no conflicts of interest



Alexey S. Kharin
MIREA – Russian Technological University
Russian Federation

Alexey S. Kharin, Engineer, Laboratory of Magnetic Control and Material’s Separation

78, Vernadskogo pr., Moscow, 119454


Competing Interests:

The authors declare no conflicts of interest



Daria A. Golovchenko
MIREA – Russian Technological University
Russian Federation

Daria A. Golovchenko, Researcher Intern, Laboratory of Magnetic Control and Material’s Separation

78, Vernadskogo pr., Moscow, 119454


Competing Interests:

The authors declare no conflicts of interest



Anna А. Sandulyak
MIREA – Russian Technological University
Russian Federation

Anna A. Sandulyak, Dr. Sci. (Eng.), Professor, Department of Devices and Information-Measuring Systems, Institute for Cybersecurity and Digital Technologies

78, Vernadskogo pr., Moscow, 119454

Scopus Author ID 7004032043

ResearcherID S-5187-2017


Competing Interests:

The authors declare no conflicts of interest



Alexander V. Sandulyak
MIREA – Russian Technological University
Russian Federation

Alexander V. Sandulyak, Dr. Sci. (Eng.), Professor, Department of Devices and Information-Measuring Systems, Institute for Cybersecurity and Digital Technologies

78, Vernadskogo pr., Moscow, 119454

Scopus AuthorID 57194504434

ResearcherID V-6094-2018


Competing Interests:

The authors declare no conflicts of interest



Haci M. Baskonus
Harran University
Turkey

Haci Mehmet Baskonus, Professor, Department of Mathematics and Science Education, Faculty of EducatioSanliurfa

Sanliurfa, 63190 

Scopus Author ID 36835781300

ResearcherID Н-4335-2019

 


Competing Interests:

The authors declare no conflicts of interest



References

1. Mosleh N., Insinga A.R., Bahl C.R.H., Bjørk R. The magnetic properties of packings of cylinders. J. Magn. Magn. Mater. 2024;607(3):172391. https://doi.org/10.1016/j.jmmm.2024.172391

2. Uestuener K., Katter M., Rodewald W. Dependence of the mean grain size and coercivity of sintered Nd–Fe–B magnets on the initial powder particle size. IEEE Trans. Magn. 2006;42(10):2897–2899. https://doi.org/10.1109/TMAG.2006.879889

3. Anhalt M., Weidenfeller B. Magnetic properties of polymer bonded soft magnetic particles for various filler fractions. J. App. Phys. 2007;101(2):023907. https://doi.org/10.1063/1.2424395

4. Schäfer K., Braun T., Riegg S., Musekamp J., Gutfleisch O. Polymer-bonded magnets produced by laser powder bed fusion: Influence of powder morphology, filler fraction and energy input on the magnetic and mechanical properties. Mater. Res. Bull. 2023;158(3):112051. https://doi.org/10.1016/j.materresbull.2022.112051

5. McFarlane J., Weber C., Wiechert A., Yiacoumi S., Tsouris C. High-gradient magnetic separation of colloidal uranium oxide particles from soil components in aqueous suspensions. Colloids and Surfaces C: Environmental Aspects. 2024;2:100023. https://doi.org/10.1016/j.colsuc.2023.100023

6. Zhivulko A.M., Yanushkevich K.I., Danilenko E.G., Zelenov F.V., Bandurina O.N. Magnetic properties of Mn1−x Gdx Se solid solutions. Sibirskii aerokosmicheskii zhurnal = Siberian Aerospace Journal. 2022;23(4):748–755 (in Russ.). https://doi.org/10.31772/2712-8970-2022-23-4-748-755

7. Normile P.S., Andersson M.S., Mathieu R., Lee S.S., Singh G., De Toro J.A. Demagnetization effects in dense nanoparticle assemblies. Appl. Phys. Lett. 2016;109(15):152404. https://doi.org/10.1063/1.4964517

8. Bjørk R., Zhou Z. The demagnetization factor for randomly packed spheroidal particles. J. Magn. Magn. Mater. 2019;476: 417–422. https://doi.org/10.1016/j.jmmm.2019.01.005

9. Walmsley N.S., Chantrell R.W., Gore J.G., Maylin M. Experimental and computational investigation of the magnetic susceptibility of composite soft materials. J. Phys. D: App. Phys. 2000;33(7):784–790. http://doi.org/10.1088/0022-3727/33/7/306

10. Gao Y., Fujiki T., Dozono H., Muramatsu K., Guan W., Yuan J., Tian C., Chen B. Modeling of Magnetic Characteristics of Soft Magnetic Composite Using Magnetic Field Analysis. IEEE Trans. Magn. 2018;54(3):7401504. https://doi.org/10.1109/TMAG.2017.2772293

11. Tortarolo M., Zysler R.D., Romero H. Magnetic order in amorphous (Fe0.25Nd0.75) 0.6B0.4 nanoparticles. J. Appl. Phys. 2009;105(11):113918. https://doi.org/10.1063/1.3140607

12. Zysler R.D., De Biasi E., Ramos C.A., Fiorani D., Romero H. Surface and Interparticle Effects in Amorphous Magnetic Nanoparticles. In: Fiorani D. (Ed.). Surface Effects in Magnetic Nanoparticles. Springer; 2005. P. 239–261. https://doi.org/10.1007/0-387-26018-8_8

13. Maciaszek R., Kollár P., Birčáková Z., Tkáč M., Füzer J., Olekšáková D., Volavka D., Samuely T., Kováč J., Bureš R., Fáberová M. Effects of particle surface modifcation on magnetic behavior of soft magnetic Fe@SiO2 composites and Fe compacts. J. Mater. Sci. 2024;59:11781–11798. https://doi.org/10.1007/s10853-024-09881-1

14. Baskar D., Adler S.B. High temperature Faraday balance for in situ measurement of magnetization in transition metal oxides. Rev. Sci. Instrum. 2007;78(2):023908. https://doi.org/10.1063/1.2432476

15. Moze O., Giovanelli L., Kockelmann W., de Groot C.H., de Boer F.R., Buschow K.H.J. Structure and magnetic properties of Nd2Co17−x Gax compounds studied by magnetic measurements and neutron diffraction. J. Magn. Magn. Mater. 1998;189: 329–334. https://doi.org/10.1016/s0304-8853(98)00291-1

16. Gaucherand F., Beaugnon E. Magnetic texturing in ferromagnetic cobalt alloys. Physica B: Cond. Matt. 2004;346–347: 262–266. https://doi.org/10.1016/j.physb.2004.01.062

17. Caignaert V., Maignan A., Pralong V., Hébert S., Pelloquin D. A cobaltite with a room temperature electrical and magnetic transition: YBaCo4O7. Solid State Sci. 2006;8(10):1160–1163. https://doi.org/10.1016/j.solidstatesciences.2006.05.004

18. Zhang C.P., Chaud X., Beaugnon E., Zhou L. Crystalline phase transition information induced by high temperature susceptibility transformations in bulk PMP-YBCO superconductor growth in-situ. Physica C. 2015;508:25–30. https://doi.org/10.1016/j.physc.2014.11.002

19. Bombik A., Leśniewska B., Pacyna A.W. Magnetic susceptibility of powder and single-crystal TmFeO3 orthoferrite. J. Magn. Magn. Mater. 2000;214(3):243–250. https://doi.org/10.1016/S0304-8853(00)00049-4

20. Kobayashi H., Tabuchi M., Shikano M., Kageyama H., Kanno R. Structure, and magnetic and electrochemical properties of layered oxides, Li2IrO3. J. Mater. Chem. 2003;13(4):957–962. https://doi.org/10.1039/b207282c

21. Seidov Z., Krug von Nidda H.-A., Hemberger J., Loidl A., Sultanov G., Kerimova E., Panfilov A. Magnetic susceptibility and ESR study of the covalent-chain antiferromagnets TlFeS2 and TlFeSe2. Phys. Rev. B. 2001;65:014433. https://doi.org/10.1103/PhysRevB.65.014433

22. Slobinsky D., Borzi R.A., Mackenzie A.P., Grigera S.A. Fast sweep-rate plastic Faraday force magnetometer with simultaneous sample temperature measurement. Rev. Sci.Instrum. 2012;83(12):125104. https://doi.org/10.1063/1.4769049

23. Gopalakrishnan R., Barathan S., Govindarajan D. Magnetic susceptibility measurements on fly ash admixtured cement hydrated with groundwater and seawater. Am. J. Mater. Sci. 2012;2(1):32–36. https://doi.org/10.5923/j.materials.20120201.06

24. Mexner W., Heinemann K. An improved method for relaxation measurements using a Faraday balance. Rev. Sci. Instrum. 1993;64(11):3336–3337. https://doi.org/10.1063/1.1144303

25. Riminucci A., Uhlarz M., De Santis R., Herrmannsdörfer T. Analytical balance-based Faraday magnetometer. J. App. Phys. 2017;121(9):094701. https://doi.org/10.1063/1.4977719

26. Sandulyak A.A., Sandulyak A.V., Polismakova M.N., Kiselev D.O., Sandulyak D.A. An approach for choosing positioning of small volume sample at instantiation ponderomotive Faraday method in determining its magnetic susceptibility. Russ. Technol. J. 2017;5(2):57–69 (in Russ.). https://doi.org/10.32362/2500-316X-2017-5-2-57-69

27. Sandulyak A.A., Sandulyak A.V., Polismakova M.N., Sandulyak D.A., Kiselev D.O. Device for Creation and Diagnostics of Stable Magnetic Field Inhomogeneity Zone: Pat. RU 2737609 Publ. 01.12.2020 (in Russ.).

28. Sandulyak A.A., Sandulyak A.V., Ershova V.A., Sandulyak D.A. Method for Magnetic-Reological Control of Magnetic Susceptibility of Particle: Pat. RU 2753159. Publ. 12.08.2021 (in Russ.).

29. Sandulyak A.V., Sandulyak A.A., Polismakova M.N., Kiselev D.O., Sandulyak D.A. Faraday magnetometer with spheric pole pieces: identification zone with a stable force factor. Russ. Technol. J. 2017;5(6):43–54 (in Russ.). https://doi.org/10.32362/2500-316X-2017-5-6-43-54

30. Sandulyak A.V., Sandulyak A.A., Polismakova M.N., Sandulyak D.A., Ershova V.A. The approach to the creation and identification of the positioning zone of the sample in the Faraday magnetometer. J. Magn. Magn. Mater. 2019;469:665–673. https://doi.org/10.1016/j.jmmm.2018.06.068

31. Sandulyak A.A., Polismakova M.N., Sandulyak D.A., Dwivedi A.P., Doumanidis C.C., Sandulyak A.V., Ershova V.A. Magnetic Field Between Polar Hemispheres: Remarks on the Dislocation of Zones of a Constant Gradient and Force Factor. Nanotechnol. Percept. 2023;19(3):67–79.

32. Sandulyak A.A., Sandulyak A.V., Polismakova M.N., Sandulyak D.A., Ershova V.A., Pamme N. Faraday Magnetometer with Polar Hemispheres: Stability Zones for Measuring of Magnetic Susceptibility of Particles. Mater. Today: Proc. 2022;59(3):933–940. https://doi.org/10.1016/j.matpr.2022.02.015


Review

For citations:


Polismakova М.N., Sandulyak D.A., Kharin A.S., Golovchenko D.A., Sandulyak A.А., Sandulyak A.V., Baskonus H.M. Expanding the capabilities of new magnetometers of ponderomotive and magnetic-rheological types with hemispherical poles. Russian Technological Journal. 2025;13(4):55-68. https://doi.org/10.32362/2500-316X-2025-13-4-55-68. EDN: PEJBLG

Views: 28


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)