Preview

Russian Technological Journal

Advanced search

Ab initio calculations of the electronic structure of CeI3 monolayer

https://doi.org/10.32362/2500-316X-2025-13-4-47-54

Abstract

Objectives. In comparison with three-dimensional structures, two-dimensional (2D) magnetic materials are promising for use in spintronics and magnetic storage devices due to their exceptional characteristics and qualitatively different physical properties. Theoretical studies into 2D magnetic structures pave the way for the development of new compounds based on experimental data. In this work, we carry out a theoretical calculation of the electronic structure of a CeI3 2D-magnetic material, taking into account the Hubbard repulsion at the site, the partial density of electronic states (DOS), and the distribution of spin and charge densities.

Methods. Calculations of the electronic structure of the CeI3 monolayer were performed using density functional theory (DFT) and the Hubbard Uscheme in the VASP software environment. The Dudarev method was used to account for the Hubbard correction.

Results. The calculated densities ofthe electronic states and the bandgap values for the ferro- and antiferromagnetic configurations of the material were found to be 1.98 and 2.08 eV, respectively. To assess the influence of correlation effects, the DOS was calculated both with and without the Hubbard correction. It was determined that the system in the ground magnetic state exhibits an antiferromagnetic ordering of the spin subsystem. The difference in the total energies of the antiferro- and ferromagnetic configurations was 2.8 meV per formula unit.

Conclusions. The calculations based on the Hubbard correction clearly demonstrated the presence of a bandgap, which is typical of semiconductor materials. The obtained bandgaps for the ferromagnetic and antiferromagnetic configurations of the system belong to the visible light range, which offers the opportunity of using 2D CeI3 as a luminescent material in devices with a magnetically controlled emission. To assess the influence of correlation effects, the DOS was calculated both with and without the Hubbard correction. The obtained results agree with those obtained in experimental studies of cerium compounds. The consideration of correlation effects and spin polarization in the presented calculations forms the basis for further research into the magnetic properties of the CeI3 monolayer for technological applications in the field of 2D magnetism.

About the Authors

Elizaveta T. Mirzoeva
MIREA – Russian Technological University
Russian Federation

Elizaveta T. Mirzoeva, Master Student, Institute for Advanced Technologies and Industrial Programming

78, Vernadskogo pr., Moscow, 119454


Competing Interests:

The authors declare no conflicts of interest



Andrey V. Kudryavtsev
MIREA – Russian Technological University
Russian Federation

Andrey V. Kudryavtsev, Cand. Sci. (Phys.-Math.), Associate Professor, Researcher, Department of Nanoelectronics, Institute for Advanced Technologies and Industrial Programming

78, Vernadskogo pr., Moscow, 119454

Scopus Author ID 55219889700

ResearcherID O-1457-2016


Competing Interests:

The authors declare no conflicts of interest



References

1. Tan H., Shan G., Zhang J. Prediction of novel two-dimensional room-temperature ferromagnetic rare-earth material – GdB2N2 with large perpendicular magnetic anisotropy. Mater. Today Phys. 2022;24:100700. https://doi.org/10.1016/j.mtphys.2022.100700

2. Vobornik I., Manju U., Fujii J., Borgatti F., Torelli P., Krizmancic D., Hor Y.S., Cava R.J., Panaccione G. Magnetic proximity effect as a pathway to spintronic applications of topological insulators. Nano Lett. 2011;11(10):4079–4082. https://doi.org/10.1021/nl201275q

3. Heinze S., Von Bergmann K., Menzel M., et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nature Phys. 2011;7(9):713–718. https://doi.org/10.1038/nphys2045

4. Zhang J., Zhao B., Yao Y., Yang Z. Robust quantum anomalous Hall effect in graphene-based van der Waals heterostructures. Phys. Rev. B. 2015;92(16):165418. https://doi.org/10.1103/PhysRevB.92.165418

5. Song T., Cai X., Tu M.W.Y., Zhang X., Huang B., Wilson N.P., Seyler K.L., Zhu L., Taniguchi T., Watanabe K., McGuire M.A., Cobden D.H., Xiao D., Yao W., Xu X. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science. 2018;360(6394):1214–1218. https://doi.org/10.1126/science.aar4851

6. Wang Z., Sapkota D., Taniguchi T., Watanabe K., Mandrus D., Morpurgo A.F. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 2018;18(7):4303–4308. https://doi.org/10.1021/acs.nanolett.8b01278

7. Ashton M., Gluhovic D., Sinnott S.B., Guo J., Stewart D.A., Hennig R.G. Two-dimensional intrinsic half metals with large spin gaps. Nano Lett. 2017;17(9):5251–5257. https://doi.org/10.1021/acs.nanolett.7b01367

8. Johansen Ø., Risinggård V., Sudbø A., Linder J., Brataas A. Current control of magnetism in two-dimensional Fe3GeTe2. Phys. Rev. Lett. 2019;122(21):217203. https://doi.org/10.1103/PhysRevLett.122.217203

9. Jiang X., Liu Q., Xing J., Liu N., Guo Y., Liu Z., Zhao J. Recent progress on 2D magnets: Fundamental mechanism, structural design and modification. Appl. Phys. Rev. 2021;8(3):031305. https://doi.org/10.1063/5.0039979

10. Tian S., Zhang J.-F., Li C., Ying T., Li S., Zhang X., Liu K., Lei H. Ferromagnetic van der Waals crystal VI3. Am. Chem. Soc. 2019;141(13):5326–5333. https://doi.org/10.1021/jacs.8b13584

11. Mermin N.D., Wagner H. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett. 1966;17(22):1133–1136. https://doi.org/10.1103/PhysRevLett.17.1133

12. Pimenov N.Yu., Lavrov S.D., Kudryavtsev A.V., Avdizhiyan A.Yu. Modeling of two-dimensional MoxW1−x S2y Se2(1−y) alloy band structure. Russian Technological Journal. 2022;10(3):56–63. https://doi.org/10.32362/2500-316X-2022-10-3-56-63

13. Guo Q., Wang L., Yang L., et al. Spectra stable deep-blue light-emitting diodes based on cryolite-like cerium(III) halides with nanosecond d-f emission. Sci. Adv. 2022;8(50):eabq2148. https://doi.org/10.1126/sciadv.abq2148

14. Wang C., Liu X., She C., Li Y. Luminescence of CeI3 in organic solvents and its application in water detection. Polyhedron. 2021;196:115013. https://doi.org/10.1016/j.poly.2020.115013

15. Xie W., Hu F., Gong S., Peng L. Study the optical properties of Cs3CeI6: First-principles calculations. AIP Advances. 2024;14:015062. https://doi.org/10.1063/5.0187100

16. Kresse G., Furthmüller J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Phys. Rev. B. 1996;54(16):11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

17. Constantin L.A., Perdew J.P., Pitarke J.M. Exchange–correlation hole of a generalized gradient approximation for solids and surfaces. Phys. Rev. B. 2009;79(7):075126. https://doi.org/10.1103/PhysRevB.79.075126

18. Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B. 1999;59(3): 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

19. Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32(7):1456–1465. https://doi.org/10.1002/jcc.21759

20. Dudarev S.L., Botton G.A., Savrasov S.Y., Humphreys C.J., Sutton A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B. 1998;57(3):1505–1509. https://doi.org/10.1103/PhysRevB.57.1505

21. Sheng K., Chen Q., Yuan H., Wang Z. Monolayer CeI2: An intrinsic room-temperature ferrovalley semiconductor. Phys. Rev. B. 2022;105(7):075304. https://doi.org/10.1103/PhysRevB.105.075304

22. Larson P., Lambrecht W.R.L., Chantis A., van Schilfgaarde M. Electronic structure of rare-earth nitrides using the LSDA+U approach: Importance of allowing 4f orbitals to break the cubic crystal symmetry. Phys. Rev. B. 2007;75(4):045114. https://doi.org/10.1103/PhysRevB.75.045114

23. Momma K., Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Cryst. 2008;41:653–658. https://doi.org/10.1107/S0021889808012016

24. Wang V., Xu N., Liu J., Tang G., Geng W. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021;267:108033. https://doi.org/10.1016/j.cpc.2021.108033

25. Chornodolskyy Ya.M., Karnaushenko V.O., Vistovskyy V.V., Syrotyuk S.V., Gektin A.V., Voloshinovskii A.S. Energy band structure peculiarities and luminescent parameters of CeX3 (X = Cl, Br, I) crystals. J. Lumin. 2021;237:118147. https://doi.org/10.1016/j.jlumin.2021.118147

26. Birowosuto M.D., Dorenbos P. Novel γ- and X-ray scintillator research: on the emission wavelength, light yield and time response of Ce3+ doped halide scintillators. Phys. Status Solidi A-Appl. Mater. Sci. 2009;206(1):9–20. https://doi.org/10.1002/pssa.200723669

27. Dorenbos P. Lanthanide 4f-electron binding energies and the nephelauxetic effect in wide band gap compounds. J. Lumin. 2013;136:122–129. https://doi.org/10.1016/j.jlumin.2012.11.030


Review

For citations:


Mirzoeva E.T., Kudryavtsev A.V. Ab initio calculations of the electronic structure of CeI3 monolayer. Russian Technological Journal. 2025;13(4):47-54. https://doi.org/10.32362/2500-316X-2025-13-4-47-54

Views: 27


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)