Preview

Russian Technological Journal

Advanced search

Measurement of magnetostriction using a strain gauge bridge with alternating excitation

https://doi.org/10.32362/2500-316X-2025-13-4-37-46

EDN: WYJGOZ

Abstract

Objectives. Knowledge of the dependence of magnetostriction of various ferromagnetic materials on the magnetic field is important for studying the magnetoelectric effect in composite structures, in particular for calculating the shape of the field dependence of piezomagnetic moduli and for calculating magnetoelastic characteristics. However, the typical resolution level of known strain gauge setups for measuring magnetostriction is about 10−6, which is insufficient to obtain detailed information on the piezomagnetic coefficients of the materials under study. The paper describes the development of an automated setup for the precision measurement of the dependence of magnetostriction of ferromagnetic plates on a magnetic field in the range of ±5 kOe providing an improved strain resolution order of magnitude.

Methods. The setup uses film strain gauges included in a Wheatstone bridge excited by alternating current. Thanks to the applied method of signal frequency shift, as well as the use of a low-noise preamplifier and temperature stabilization of the measuring cell, it was possible to reduce the level of noise referred to the input and zero drift of the measuring circuit.

Results. The developed setup provides an accuracy of the magnetostriction measurement of ferromagnetic plates up to 10−7 in the range of magnetic fields of ±5 kOe, which is an order of magnitude higher than known methods. The setup also allows measuring the electric and piezoelectric deformation of materials depending on the applied electrical voltage in the range of ±500 V. The measurement results can be used to more accurately calculate the field dependencies of the piezomagnetic and piezoelectric coefficients of materials, including materials with low magnetostriction, such as various ferrites, hematite, yttrium iron garnet, etc.

Conclusions. The method of alternating excitation of the measuring bridge in combination with other measures can be used to increase the deformation resolution to about 10−7.

About the Author

Dmitry A. Burdin
MIREA – Russian Technological University
Russian Federation

Dmitry A. Burdin, Cand. Sci. (Phys.-Math.), Senior Researcher, Scientific and Educational Center “Magnetoelectric Materials and Devices” 

78, Vernadskogo pr., Moscow, 119454

ResearcherID N-9597-2016


Competing Interests:

The author declares no conflicts of interest



References

1. Chu Z., Pourhosseini Asl M., Dong S. Review of multi-layered magnetoelectric composite materials and devices applications. J. Phys. D: App. Phys. 2018;51(24):243001. https://doi.org/10.1088/1361-6463/aac29b

2. Серов В.Н., Фетисов Л.Ю., Фетисов Ю.К., Шестаков Е.И., Высокочувствительный магнетометр на основе магнитоэлектрического датчика. Российский технологический журнал. 2016;4(5):24–37. https://doi.org/10.32362/2500-316X-2016-4-5-24-37 [Serov V.N., Fetisov L.Y., Fetisov Y.K., Shestakov E.I. High-sensitivity magnetometer based on a magnetoelectric sensor. Rossiiskii tekhnologicheskii zhurnal. 2016;4(5):24–37 (in Russ.). https://doi.org/10.32362/2500-316X-2016-4-5-24-37 ]

3. Федулов Ф.А., Савельев Д.В., Чашин Д.В., Шишкин В.И., Фетисов Ю.К. Магнитоэлектрический эффект в двухслойных полосковых и периодических гетероструктурах никель – цирконат-титанат свинца. Russian Technological Journal. 2022;10(3):64–73. https://doi.org/10.32362/2500-316X-2022-10-3-64-73 [Fedulov F.A., Saveliev D.V., Chashin D.V., Shishkin V.I., Fetisov Yu.K. Magnetoelectric effects in stripe- and periodic heterostructures based on nickel–lead zirconate titanate bilayers. Russian Technological Journal. 2022;10(3):64–73. https://doi.org/10.32362/2500-316X-2022-10-3-64-73 ]

4. Kuczynski K., Bienkowski A., Szewczyk R. New Measuring System for Testing of the Magnetostrictive Properties of the Soft Magnetic Materials. In: 10th IMIKO TC4 Int. Workshop on ADC Modeling and testing – IWADC. 2005. P. 434–439. URL: https://www.imeko.info/publications/tc4-2005/IMEKO-TC4-2005-078.pdf

5. Linhares C.C., Santo J.E., Teixeira R.R., Coutinho C.P., Tavares S.M.O., Pinto M., Costa J.S., Mendes H., Monteiro C.S., Rodrigues A.V., Frazao O. Magnetostriction Assessment with strain gauges and fiber bragg gratings. EAI Endorsed Trans. on Energy Web. 2020;7(25):e4. https://doi.org/10.4108/eai.13-7-2018.161420

6. Wang Z., Fan Z., Li X., Xu K., Yu R. Measurement of magnetic and magnetostrictive characteristics of transformer core based on triaxial strain gauge and B-H vector sensor. Sensors. 2023;23(13):5926. http://doi.org/10.3390/s23135926

7. Pszcaola J., Cetnar T. Measurements of huge magnetostriction of the heavy rare earth – iron intermetallics. Physics for Economy. 2021;4:65–74.

8. Wang W., Liu H., Huang R., Zhao Y., Huang C., Guo S., Shan Y., Li L. Thermal expansion and magnetostriction measurements using the Strain Gauge Method. Front. Chem. 2018;6:72. https://doi.org/10.3389/fchem.2018.00072

9. Iwakami O., Kawata N., Takeshita M., Yao Y., Abe S., Matsumoto K. Thermal expansion and magnetostriction measurements using a Quantum Design Physical Property Measurement System. J. Phys.: Conf. Ser. 2014;568(3):032002. https://doi.org/10.1088/1742-6596/568/3/032002

10. Kundys B., Bukhantsev Y., Vasiliev S., Kundys D., Berkowski M., Dyakonov V.P. Three terminal capacitance technique for magnetostriction and thermal expansion measurements. Rev. Sci. Instrum. 2004;75(6):2192–2196. https://doi.org/10.1063/1.1753088

11. Miyake A., Mitamura H., Kawachi S., Kimura K., Kimura T., Kihara T., Tachibana M., Tokunaga M. Capacitive detection of magnetostriction, dielectric constant, and magneto-caloric effects in pulsed magnetic fields. Rev. Sci. Instrum. 2020;91:105103. https://doi.org/10.1063/5.0010753

12. Tam A.C., Schroeder H. A new high-precision optical technique to measure magnetostriction of a thin magnetic film deposited on a substrate. IEEE Trans. Magnetic. 1989;25(3):2629–2638. https://doi.org/10.1109/20.24502

13. Samata H., Nagata Y., Uchida T., Abe S. New optical technique for bulk magnetostriction measurement. J. Magn. Magn. Mater. 2000;212(3):355–360. https://doi.org/10.1016/S0304-8853(99)00832-X

14. Hrabovska K., Zivotsky O., Rojicek J., Fusek M., Mares V., Jirakova Y. Surface magnetostriction of FeCoB amorphous ribbons analyzed using magneto-optical Kerr microscopy. Materials. 2020;13(2):257. https://doi.org/10.3390/ma13020257

15. Poore M., Kesterson K. Measuring the thermal expansion of solids with strain gauges. J. Test. Eval. 1978;6(2):98–102. https://doi.org/10.1520/JTE10926J

16. Khan M.A., Dumstorff G., Winkilmann C., Lang W. Investigation on noise level in AC- and DC-bridge circuits for sensor measurement systems. In: 18th GMA / ITG Conf. Sensors and Meas. Systems. 2016. P. 601–605. http://doi.org/10.5162/sensoren2016/P4.4

17. Chashin D.V., Burdin D.A., Fetisov L.Y., Economov N.A., Fetisov Y.K. Precise measurement of magnetostriction of ferromagnetic plates. J. Sib. Fed. Univ. Math. Phys. 2018;11(1):30–34. https://doi.org/10.17516/1997-1397-2018-11-1-30-34

18. Nyquist H. Thermal Agitation of Electric Charge in Conductors. Phys. Rev. 1928;32:110–113. https://doi.org/10.1103/PhysRev.32.110

19. Hooge F.N. 1/f noise is no surface effect. Phys. Lett. A. 1969;29(3):139–140. https://doi.org/10.1016/0375-9601(69)90076-0

20. Voss R.F., Clarke J. Flicker (1/f) noise: equilibrium temperature and resistance fluctuations. Phys. Rev. B. 1976;13(2): 556–573. https://doi.org/10.1103/PhysRevB.13.556

21. Walter D., Bulau A., Zimmermann A. Review on excess noise measurements of resistors. Sensors. 2023;23(3):1107. https://doi.org/10.3390/s23031107


Review

For citations:


Burdin D.A. Measurement of magnetostriction using a strain gauge bridge with alternating excitation. Russian Technological Journal. 2025;13(4):37-46. https://doi.org/10.32362/2500-316X-2025-13-4-37-46. EDN: WYJGOZ

Views: 34


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)