Preview

Russian Technological Journal

Advanced search

Programming and computing suite for simulating the therapeutic absorbed dose in radiotherapy

https://doi.org/10.32362/2500-316X-2025-13-4-7-24

EDN: WLFGJJ

Abstract

Objectives. Simulation of the absorbed dose is an essential part of radiation therapeutic treatment, performed not only for its correct evaluation, but also for assuring quality control and retrospective evaluation of the provided cure. From the technological point of view, strict requirements are imposed on the software applications and hardware units that support a successful decision-making process before, during, or after the provided therapy. This paper reports an R&D project aimed at technological support of radiation treatment planning systems coupled with the creation of a mathematical framework for estimating the absorbed dose for radiobiological and medical therapeutic purposes.

Methods. Adedicated automated software suite for executing multipurpose Monte Carlo simulations was developed. The suite is backed up with virtualization techniques for structured hardware access, data intercommunication using diverse connection channels, various physical interaction engines, and coupled end-user software.

Results. The developed suite facilitates a wide array of tasks in the realm of radiobiological research conducted using radiation beams of different qualities. Additionally, it serves as a foundation toolkit for developing radiotherapy planning systems for both existing and new therapeutic facilities, as well as software packages for estimation of the long-term effects of the conducted radiotherapy.

Conclusions. The developed programming and computing suite is an effective tool for organizing a specialized environment for multipurpose estimation of the absorbed dose of radiation for therapeutic applications of radiation beams of different qualities. The suite can be updated and extended upon end-user needs and modified by skilled software developers for specific purposes.

About the Authors

Aleksei N. Solovev
A. Tsyb Medical Radiological Research Center – Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation; Obninsk Institute for Nuclear Power Engineering
Russian Federation

Aleksei N. Solovev, Cand. Sci. (Phys.-Math.), Head of Laboratory of Medical Radiation Physics, Radiation Biophysics Department; Associate Professor, Radionuclide Medicine Department

10, Marshala Zhukova ul., Obninsk, Kaluga oblast, 249031; 1, Studgorodok, Obninsk, Kaluga oblast, 249039 

Scopus Author ID 57215856302

ResearcherID O-6340-2014


Competing Interests:

The authors declare no conflicts of interest



Yana V. Kizilova
A. Tsyb Medical Radiological Research Center – Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
Russian Federation

Yana V. Kizilova, Researcher, Laboratory of Medical Radiation Physics, Radiation Biophysics Department

10, Marshala Zhukova ul., Obninsk, Kaluga oblast, 249031


Competing Interests:

The authors declare no conflicts of interest



Evgeniy I. Kazakov
A. Tsyb Medical Radiological Research Center – Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
Russian Federation

Evgeniy I. Kazakov, Engineer, Laboratory of Development and Operation of Radiation Equipment, Radiation Biophysics Department

10, Marshala Zhukova ul., Obninsk, Kaluga oblast, 249031 


Competing Interests:

The authors declare no conflicts of interest



Sergey N. Koryakin
A. Tsyb Medical Radiological Research Center – Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation; Obninsk Institute for Nuclear Power Engineering
Russian Federation

Sergey N. Koryakin, Cand. Sci. (Biol.), Head of Radiation Biophysics Department; Associate Professor, Radionuclide Medicine Department

10, Marshala Zhukova ul., Obninsk, Kaluga oblast, 249031; 1, Studgorodok, Obninsk, Kaluga oblast, 249039 

Scopus Author ID 6603357340


Competing Interests:

The authors declare no conflicts of interest



References

1. Mardynsky Yu.S., Gulidov I.А., Gordon K.B., Кoryakin S.N., Solovyov А.N., Saburov V.О., Ivanov S.А., Kaprin А.D., Lobzhanidze Т.K., Маrkov N.V., Zheleznov I.М., Yurkov D.I., Gerasimchuk О.А., Presnyakov А.Yu., Zverev V.I., Smirnov V.P. External-Beam Neutron Therapy: The First Domestic Medical Unit. Vestnik Rossiiskoi Akademii Nauk (Herald of the Russian Academy of Sciences). 2024;94(1):80–86 (in Russ.). https://doi.org/10.31857/S0869587324010098

2. Rod’ko I.I., Sarychev G.A., Balakirev P.V., et al. Development of a Radiotherapy System Based on 6 MeV Linac and ConeBeam Computer Tomograph. At. Energy. 2019;125(5):333–337. https://doi.org/10.1007/s10512-019-00490-9

3. Inaniwa T., Kanematsu N., Noda K., Kamada T. Treatment planning of intensity modulated composite particle therapy with dose and linear energy transfer optimization. Phys. Med. Biol. 2017;62(12):5180–5197. https://doi.org/10.1088/1361-6560/aa68d7

4. Krämer M. Swift ions in radiotherapy – Treatment planning with TRiP98. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2009;267(6):989–992. https://doi.org/10.1016/j.nimb.2009.02.015

5. Elyutina A.S., Kiger W.S., Portnov A.A. NCTPlan application for neutron capture therapy dosimetric planning at MEPhI nuclear research reactor. Appl. Radiat. Isot. 2011;69(12):1888–1891. https://doi.org/10.1016/j.apradiso.2011.04.018

6. Takeuchi A., Hirose K., Kato R., Komori S., Sato M., Motoyanagi T., Yamazaki Y., Narita Y., Takai Y., Kato T. Evaluation of calculation accuracy and computation time in a commercial treatment planning system for accelerator-based boron neutron capture therapy. Radiol. Phys. Technol. 2024;17(4):907–917. https://doi.org/10.1007/s12194-024-00833-7

7. Tenk Y.C., Chen J., Zhong W.B., Lio Y.H. HU-based material conversion for BNCT accurate dose estimation. Sci. Rep. 2023;13:15701 https://doi.org/10.1038/s41598-023-42508-0

8. Allison J., Amako K., Apostolakis J., et al. Recent developments in Geant4. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2016;835:186–225. https://doi.org/10.1016/j.nima.2016.06.125

9. Ahdida C., Bozzato D., Calzolari D., et al. New Capabilities of the FLUKA Multi-Purpose Code. Front. Phys. 2022;9:788253. https://doi.org/10.3389/fphy.2021.788253

10. Rising M.E., Armstrong J.C., Bolding S.R., et al. MCNP® Code V.6.3.0 Release Notes. Tech. Rep. LA-UR-22-33103, Rev. 1. Los Alamos National Laboratory, Los Alamos, NM, USA. 2023. 55 p. URL: CoverSheet

11. Sato T., Iwamoto Y., Hashimoto S., et al. Recent improvements of the particle and heavy ion transport code system – PHITS version 3.33. J. Nuclear Sci. Technol. 2023;61(1):127–135. https://doi.org/10.1080/00223131.2023.2275736

12. Bassler N., Hansen D.C., Lühr A., Thomsen B., Petersen J.B., Sobolevsky N. SHIELD-HIT12A – a Monte Carlo particle transport program for ion therapy research. J. Phys.: Conf. Ser. 2014;489:012004. https://doi.org/10.1088/1742-6596/489/1/012004

13. Muraro S., Battistoni G., Kraan A.C. Challenges in Monte Carlo Simulations as Clinical and Research Tool in Particle Therapy: A Review. Front. Phys. 2020;8:567800. https://doi.org/10.3389/fphy.2020.567800

14. Petringa G., Romano F., Manti L., et al. Radiobiological quantities in proton-therapy: Estimation and validation using Geant4-based Monte Carlo simulations. Phys. Med. 2019;58:72–80. https://doi.org/10.1016/j.ejmp.2019.01.018

15. Troshina M.V., Koryakina E.V., Potetnya V.I., Koryakin S.N., Pikalov V.A., Antipov Yu.M. Induction of chromosome aberrations in B14-150 cells following carbon ions irradiation at low doses. J. Phys.: Conf. Ser. 2020;1701:012029. https://doi.org/10.1088/1742-6596/1701/1/012029

16. Kyriakou I., Sakata D., Tran H.N., et al. Review of the Geant4-DNA simulation toolkit for radiobiological applications at the cellular and DNA level. Cancers. 2022;14(1):35. https://doi.org/10.3390/cancers14010035

17. Chatzipapas K., Dordevic M., Zivkovic S., et al. Geant4-DNA simulation of human cancer cells irradiation with helium ion beams. Phys. Med. 20233;112:102613. https://doi.org/10.1016/j.ejmp.2023.102613

18. Pisciotta P., Cammarata F.P., Stefano A., et al. Monte Carlo GEANT4-based application for in vivo RBE study using small animals at LNS-INFN preclinical hadrontherapy facility. Phys. Med. 2018;54:173–178. https://doi.org/10.1016/j.ejmp.2018.07.003

19. Taha E., Djouider F., Banoqitah E. Monte Carlo simulations for dose enhancement in cancer treatment using bismuth oxide nanoparticles implanted in brain soft tissue. Australas. Phys. Eng. Sci. Med. 2018;41:363–370. https://doi.org/10.1007/s13246-018-0633-z

20. Cadini F., De Sanctis J., Girotti T., Zio E., Luce A., Taglioni A. Monte Carlo-based assessment of the safety performance of a radioactive waste repository. Reliability Engineering & System Safety (RESS). 2010;95(8):859–865. https://doi.org/10.1016/j.ress.2010.04.002

21. Geng C., Tang X., Gong C., Guan F., Johns J., Shu D., Chen D. AMonte Carlo-based radiation safety assessment for astronauts in an environment with confined magnetic field shielding. J. Radiol. Prot. 2015;35(4):777. https://doi.org/10.1088/0952-4746/35/4/777

22. Archer J.W., Large M.J., Bolst D., et al. A multiscale nanodosimetric study of GCR protons and alpha particles in the organs of astronauts on the lunar surface Rad. Phys. Chem. 2025;229:112448. https://doi.org/10.1016/j.radphyschem.2024.112448

23. Chernukha A.E., Saburov V.O., Adarova A.I., Solovev A.N., Kizilova Yu.V., Koryakin S.N. Three-Dimensional Models and Complimentary Geometry for Dose Evaluation in NG-24MT Based Neutron Radiotherapy Cabinet. Izvestiya vuzov. Yadernaya energetika. 2022;3:158–167 (in Russ.). https://doi.org/10.26583/npe.2022.3.14

24. Koryakin S., Isaeva E., Beketov E., Solovev A., Ulyanenko L., Fedorov V., Lityaev V., Ulyanenko S. The photon capture therapy model for in vivo and in vitro studies using Au nanocomposites with the hyaluronic acid based compounds. RAD Journal. 2017;2(2):86–89. http://doi.org/10.21175/RadJ.2017.02.019

25. Solovyev A.N., Fedorov V.V., Kharlov V.I., Stepanova U.A. Comparative analysis of MCNPX and GEANT4 codes for fastneutron radiation treatment planning. Nuclear Energy Technol. 2015;1(1):14–19. https://doi.org/10.1016/j.nucet.2015.11.004

26. Solovev A.N., Kizilova Ya.V., Koryakin S.N. A Software Toolkit for DICOM Medical Standard Images Conversion to Rapid Access Formats: computer program. Registration number (certificate) 2023685423 RF. Publ. 27.11.2023 (in Russ.).

27. Solovev A.N., Kizilova Ya.V., Chernukha A.E., Merzlikin G.V., Koryakin S.N. Software Toolkit for General-Purpose Phase Space Conversion to Rapid Access Formats: computer program. Registration number (certificate) 2024660249 RF. Publ. 03.05.2024 (in Russ.).

28. Solovev A.N., Kizilova Ya.V., Zverev V.I., Presnyakov A.Yu., Koryakin S.N. A Supplementary Tool for Visual-Based Verification of Cross-Section of Collimator Slice with Patient Body in the Pre-Treatment Stage: computer program. Registration number (certificate) 2024665975 RF. Publ. 09.07.2024 (in Russ.).

29. SolovevA.N., ChernukhaA.E., Koryakin S.N., PresnyakovA.Yu., Zverev V.I. Automated Optimization Tool for Fast Neutron Therapy Using 3D-CRT Regime by Root Mean Square Deviation with Broyden-Fletcher-Goldfarb-Shanno Algorithm Implemented in Pytorch: computer program. Registration number (certificate) 2024664787 RF. Publ. 09.07.2024 (in Russ.).

30. Butenko A.V., Syresin E.M., Tyutyunnikov S.I., et al. Analysis of Metrological Provision Problems of a Test Stand for Testing Radio-Electronic Products for Resistance to Irradiation with High-Energy Heavy Ions. Phys. Part. Nuclei Lett. 2019;16: 734–743. https://doi.org/10.1134/S1547477119060098

31. Brun R., Rademakers F. ROOT — An object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1997;389(1–2):81–86. https://doi.org/10.1016/S0168-9002(97)00048-X

32. Gordon K.B., Saburov V.O., Koryakin S.N., et al. Calculation of the Biological Efficiency of the Proton Component from 14.8 MeV Neutron Irradiation in Computational Biology with Help of Video Cards. Bull. Exp. Biol. Med. 2022;173:281–285. https://doi.org/10.1007/s10517-022-05534-y [Original Russian Text: Gordon K.B., Saburov V.O., Koryakin S.N., Gulidov I.A., Fatkhudinov T.Kh., Arutyunyan I.V., Kaprin A.D., Solov’ev A.N. Calculation of the Biological Efficiency of the Proton Component from 14.8 MeV Neutron Irradiation in Computational Biology with Help of Video Cards. Byulleten’ eksperimental’noi biologii i meditsiny. 2022;173(2):263–267 (in Russ.). https://doi.org/10.47056/0365-9615-2022-173-2-263-267 ]

33. Schneider W., Bortfeld T., Schlegel W. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions Phys. Med. Biol. 2000;45(2):459. https://doi.org/10.1088/0031-9155/45/2/314

34. Kotb O.M., Solovev A.N., Saburov V.O., et al. Response of the FBX aqueous chemical dosimeter to high energy proton and electron beams used for radiotherapy research. Radiat. Phys. Chem. 2024;216:111451. https://doi.org/10.1016/j.radphyschem.2023.111451

35. Balakin V.E., Bazhan A.I., Alexandrov V.A., et al. Updated Status of Protom Synchrotrons for Radiation Therapy. In: 27 Russian Particle Acc. Conf. (Proc. RuPAC’21, Alushta, Russia). J. Accelerator Conferences Website (JACoW) Publishing. 2021. P. 120–123. https://doi.org/10.18429/JACoW-RuPAC2021-FRB05

36. Yuzhakov V.V., Korchagina K.S., Fomina N.K., Koryakin S.M., Solovev A.N., Ingel I.E., Koretskaya A.E., Sevankaeva L.E., Yakovleva N.D., Tsyganova M.G. Effect of gamma-radiation and scanning proton beam on the morphofunctional characteristics of rat sarcoma M-1. Radiatsiiya i risk = Radiation and Risk. 2020;29(2):101–114 (in Russ.). https://doi.org/10.21870/0131-3878-2020-29-2-101-114

37. Solovev A.N., Chernukha A.E., Potetnya V.I. The Radiobiological Experiments Decision Making Support System for Temporary Radiobiological Stand of the U-70 Accelerator Facility: computer program. Registration number (certificate) 2020615172 RF. Publ. 18.05.2020 (in Russ.).

38. Beketov E., Isaeva E., Malakhov E., Nasedkina N., Koryakin S., Ulyanenko S., Solovev A., Lychagin A. The study of biological effectiveness of U-70 accelerator carbon ions using melanoma B-16 clonogenic assay. RAD Journal. 2017;2(2): 90–93. https://doi.org/10.21175/RadJ.2017.02.020

39. Solovev A.N., Chernukha A.E., Troshina M.V., Lychagin A.A. Pikalov V.A., Kharlov V.I. Design of passive beam modifiers in carbon ion beam at U-70 synchrotron facility for radiobiological studies. Meditsinskaya Fizika = Medical Physics. 2016;4(72):47–54 (in Russ.). https://elibrary.ru/item.asp?id=27428891

40. Zaichkina S.I., Rozanova O.M., Smirnova E.N., et al. Assessment of the Biological Efficiency of 450 MeV/Nucleon Accelerated Carbon Ions in the U-70 Accelerator According to the Criterion of Mouse Survival. BIOPHYSICS. 2019;64: 991–998. https://doi.org/10.1134/S000635091906023X [Original Russian Text: Zaichkina S.I., Rozanova O.M., Smirnova E.N., Dyukina A.R., Belyakova T.A., Strelnikova N.S., Sorokina S.S., Pikalov V.A. Assessment of the Biological Efficiency of 450 MeV/Nucleon Accelerated Carbon Ions in the U-70 Accelerator According to the Criterion of Mouse Survival. Biofizika. 2019;64(4):1208–1215 (in Russ.). http://dx.doi.org/10.1134/S0006302919060206 ]

41. Kuznetsova E.A., Sirota N.P., Mitroshina I.Yu., Pikalov V.A., Smirnova E.N., Rozanova O.M., Glukhov S.I., Sirota T.V., Zaichkina S.I. DNA damage in blood leukocytes from mice irradiated with accelerated carbon ions with an energy of 450 MeV/nucleon. Int. J. Radiat. Biol. 2020;96(10):1245–1253. https://doi.org/10.1080/09553002.2020.1807640

42. Pikalov V.A., Alexeev A.G., Antipov Y.M., Kalinin V.A., Koshelev A.V., Maximov A.V., Ovsienko M.P., Polkovnikov M.K., Soldatov A.P. The Results Obtained on “Radiobiological Stand” Facility, Working with the Extracted Carbon Ion Beam of the U-70 Accelerator. In: 27 Russian Particle Acc. Conf. (Proc. RuPAC’21, Alushta, Russia). J. Accelerator Conferences Website (JACoW) Publishing. 2021. P. 124–126. https://doi.org/10.18429/JACoW-RuPAC2021-FRB06

43. Garkusha V.I., Ivanov S.V., Kalinin V.A., et al. Status of work on creating carbon ion beam channels for radiobiological and preclinical studies at the U-70 accelerator complex. Instrum. Exp. Tech. 2024;64(Suppl.2):S256–S241. https://doi.org/10.1134/S0020441224701768 [Original Russian Text: Garkusha V.I., Ivanov S.V., Kalinin V.A., Maksimov A.V., Markin A.M., Novoskol’tsev F.N., Pikalov V.A., Soldatov A.P., Sinyukov R.Yu. Status of work on creating carbon ion beam channels for radiobiological and preclinical studies at the U-70 accelerator complex. Pribory i tekhnika eksperimenta. 2024;8(S2):14 (in Russ.).]

44. Meffe G., Votta C., Turco G., Chillè E., et al. Impact of data transfer between treatment planning systems on dosimetric parameters. Phys. Med. 2024;121:103369. https://doi.org/10.1016/j.ejmp.2024.103369

45. Mosleh Shirazi M.A., Faghihi R., Siavashpour Z., Nedaie H.A., Mehdizadeg S., Sina S. Independent evaluation of an in-house brachytherapy treatment planning system using simulation, measurement and calculation methods. J. Appl. Clin. Med. Phys. 2012;13(2):103–112. https://doi.org/10.1120/jacmp.v13i2.3687

46. Kumada H., Takada K., Aihara T., Matsumura A., Sakurai H., Sakae T. Verification for dose estimation performance of a Monte-Carlo based treatment planning system in University of Tsukuba. Appl. Radiat. Isot. 2021;166:109222. https://doi.org/10.1016/j.apradiso.2020.109222

47. Moyers M.F., Lin J., Li J., Chen H., Shen Z. Optimization of the planning process with an in-house treatment information, management, and planning system. Radiat. Med. Protect. 2022;3(3):102–107. https://doi.org/10.1016/j.radmp.2022.07.004

48. Shao Y., Gui J., Wang J., et al. Novel in-house knowledge-based automated planning system for lung cancer treated with intensity-modulated radiotherapy. Strahlenther. Onkol. 2023;200(11):967–982. https://doi.org/10.1007/s00066-023-02126-1

49. Guo Y., Liu Z., Feng S., Cai H., Zhang Q. Clinical Viability of an Active Spot Scanning Beam Delivery System with a Newly Developed Carbon-Ion Treatment Planning System. Adv. Radiat. Oncol. 2024;9(7):101503. https://doi.org/10.1016/j.adro.2024.101503

50. KalyganovaN.V., KiselevV.A., KashentsevaN.V., UdalovYu.D., GritsenkoS.E. Comparison of dosimetric properties of proton and intensity modulated radiotherapy for glioblastomes. In: Il’inskie chteniya 2022: Proceedings of the School-Conference of Young Scientists and Specialists. Moscow, 2022. P. 141–142 (in Russ.). https://elibrary.ru/item.asp?id=49488724

51. Okada S., Murakami K., Amako K., et al. GPU Acceleration of Monte Carlo Simulation at the Cellular and DNA Levels. In book series: Chen Y.W., Torro C., Tanaka S., Howlett R. (Eds.). Innovation in Medicine and Healthcare 2015. Smart Innovation, Systems and Technologies. Springer; 2016. V. 45. P. 323–332. http://dx.doi.org/10.1007/978-3-319-23024-5_29

52. Okada S., Murakami K., Incerti S., Amako K., Sasaki T. MPEXS-DNA, A new GPU-based Monte Carlo simulator for track structure and radiation chemistry at subcellular scale. Med. Phys. 2019;46(3):1483–1500. https://doi.org/10.1002/mp.13370

53. Qin N., Shen C., Tasi M.Y., et al. Full Monte Carlo–Based Biologic Treatment Plan Optimization System for Intensity Modulated Carbon Ion Therapy on Graphics Processing Unit. Int. J. Radiat. Oncol. Biol. Phys. 2018;100(1):235–243. https://doi.org/10.1016/j.ijrobp.2017.09.002

54. Franciosini G., Carlotti D., Cattani F., et al. IOeRT conventional and FLASH treatment planning system implementation exploiting fast GPU Monte Carlo: The case of breast cancer. Phys. Med. 2024;121:103346. https://doi.org/10.1016/j.ejmp.2024.103346

55. Magro G., Mein S., Kopp B., et al. FRoG dose computation meets Monte Carlo accuracy for proton therapy dose calculation in lung. Phys. Med. 2021;88;66–74. https://doi.org/10.1016/j.ejmp.2021.05.021

56. Yagi M., Tsubouchi T., Hamatani N., Takashina M., Maruo H., Fujitaka S., et al. Commissioning a newly developed treatment planning system, VQA Plan, for fast-raster scanning of carbon-ion beams. PLoS ONE. 2022;17(5):e0268087. https://doi.org/10.1371/journal.pone.0268087

57. Lu Y., Sigov A., Ratkin L, Ivanov L.A., Zuo M. Quantum computing and industrial information integration: A review. J. Ind. Inform. Integr. 2023;35:100511. https://doi.org/10.1016/j.jii.2023.100511

58. Giraud P., Bibault J.E. Artificial intelligence in radiotherapy: Current applications and future trends. Diagn. Interv. Imaging. 2024;105(12):475–480. https://doi.org/10.1016/j.diii.2024.06.001


Review

For citations:


Solovev A.N., Kizilova Ya.V., Kazakov E.I., Koryakin S.N. Programming and computing suite for simulating the therapeutic absorbed dose in radiotherapy. Russian Technological Journal. 2025;13(4):7-24. https://doi.org/10.32362/2500-316X-2025-13-4-7-24. EDN: WLFGJJ

Views: 60


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)