Thermal and mechanical degradation mechanisms in heterostructural field-effect transistors based on gallium nitride
https://doi.org/10.32362/2500-316X-2025-13-2-57-73
EDN: TTUFNR
Abstract
Objectives. Gallium nitride heterostructural field-effect transistors (GaN HFET) are among the most promising semiconductor devices for power and microwave electronics. Over the past 10–15 years, GaN HFETs have firmly established their position in radio-electronic equipment for transmitting, receiving, and processing information, as well as in power electronics products, due to their significant advantages in terms of energy and thermal parameters. At the same time, issues associated with ensuring their reliability are no less acute than for devices based on other semiconductor materials. The aim of the study is to review the thermal and mechanical mechanisms of degradation in GaN HFETs due to the physicochemical characteristics of the materials used, as well as their corresponding growth and post-growth processes. Methods for preventing or reducing these mechanisms during development, production, and operation are evaluated.
Methods. The main research method consists in an analytical review of the results of publications by a wide range of specialists in the field of semiconductor physics, production technology of heteroepitaxial structures and active devices based on them, as well as the modeling and design of modules and equipment in terms of their reliable operation.
Results. As well as describing the problems of GaN HFET quality degradation caused by thermal overheating, mechanical degradation, problems with hot electrons and phonons in gallium nitride, the article provides an overview of research into these phenomena and methods for reducing their impact on transistor technical parameters and quality indicators.
Conclusions. The results of the study show that strong electric fields and high specific thermal loading of highpower GaN HFETs can cause physical, polarization, piezoelectric and thermal phenomena that lead to redistribution of mechanical stresses in the active region, degradation of electrical characteristics, and a decrease in the reliability ofthe transistor as a whole. Itis shown that the presence of a field-plate and a passivating SiN layer leads to a decrease in the values of mechanical stress in the gate area by 1.3–1.5 times. The effects of thermal degradation in class AB amplifiers are more pronounced than the effects of strong fields in class E amplifiers; moreover, the mean time to failure sharply decreases at GaN HFET active zone temperatures over 320–350°C.
About the Author
Vadim M. MinnebaevRussian Federation
Vadim M. Minnebaev, Cand. Sci. (Eng.), Assistant Professor, Deputy General Director on the Development of Electronic Components
5-1, Shchelkovskoye sh., Moscow, 105122
Scopus AuthorID 6602931676
Competing Interests:
The author declares no conflicts of interest.
References
1. Akinin V.E., Borisov O.V., Ivanov K.A., Kolkovskiy Yu.V., Minnebaev V.M., Redka Al.V. 350-Watt solid-state amplifier of X-band frequencies with air cooling. Nanoindustriya = Nanoindustry. 2020;13;S4(99):465–467 (in Russ.). https://doi.org/10.22184/1993-8578.2020.13.4s.465.467
2. Belolipeckiy A.V., Borisov O.V., Kolkovsky Yu.V., Lega1 G.V., Minnebaev V.M., Redka Al.V., Redka An.V. Electronic antenna unit for X-band space application AESA. Elektronnaya tekhnika. Seriya 2: Poluprovodnikovye pribory = Electronic Engineering. Series 2. Semiconductor Devices. 2017;3(246):15–25 (in Russ.).
3. Borisov O.V., Zubkov A.V., Ivanov K.A., Minnebaev V.M., Redka A.V. X-band 70-W GaN broadband power amplifier. Elektronnaya tekhnika. Seriya 2: Poluprovodnikovye pribory = Electronic Engineering. Series 2. Semiconductor Devices. 2014;2(233):4–9 (in Russ.).
4. Abolduyev I.M., Garber G.Z., Zubkov A.V., Ivanov K.A., Kolkovsky Yu.V., Minnebaev V.M., Redka A.V., Ushakov A.V. The pulse mode operation of the microwave power AlGaN/GaN HFE. Elektronnaya tekhnika. Seriya 2: Poluprovodnikovye pribory = Electronic Engineering. Series 2. Semiconductor Devices. 2012;1(228):48–53 (in Russ.).
5. Ghovanloo M. Dual-Heterojunction High Electron Mobility Transistors on GaAs Substrate. University of Michigan. Ann Arbor MI 48109-2122. 2008. 18 p.
6. Hamaguchi C., Miyatsuji K., Hihara H. Proposal of single quantum well transistor (SQWT) self-consistent calculations of 2D electrons in a quantum well with external voltage. Jpn. J. Appl. Phys. Part 2. 1984;23(3):132–134. https://doi.org/10.1143/JJAP.23.L132
7. Morkoc H. Handbook of Nitride Semiconductors and Devices. V. 3. GaN-based Optical and Electronic Devices. Wiley‐VCH Verlag GmbH & Co. 2008. 902 p. http://doi.org/10.1002/9783527628445
8. Butte R., Carlin J.-F., Feltin E., Gonschorek M., Nicolay S., Christmann G., Simeonov D., Castiglia A., Dorsaz J., Buehlmann H.J., Christopoulos S., von Hogersthal B.H., Grundy G.A.J.D., Mosca M., Pinquier C., Py M.A., Demangeot F., Frandon J., Lagoudakis P.G., Baumberg J.J., Grandjean N. Current status of AlInN layers lattice-matched to GaN for photonics and electronics. J. Phys. D: Appl. Phys. 2007;40(20):6328–6344. https://doi.org/10.1088/0022-3727/40/20/S16
9. Ramonas M., Matulionis A., Liberis J., Eastman L.F., Chen X., Sun Y.-J. Hot-phonon effect on power dissipation in a biased AlGaN/AlN/GaN channel. Phys. Rev. B. 2005;71(7):075324. https://doi.org/10.1103/PhysRevB.71.075324
10. Kasahara K., Miyamoto N., Ando Y., Okamoto Y., Nakayama T., Kuzuhara M. Ka-band 2.3W power AlGaN–GaN heterojunction FET. IEDM Tech. Dig. 2002:667–680. http://doi.org/10.1109/IEDM.2002.1175929
11. Polovko A.M. Osnovy teorii nadezhnosti (Fundamentals of Reliability Theory). Moscow: Nauka; 1964. 446 p. (in Russ.).
12. Meneghesso G., Meneghini M., Tazzoli A., et al. Reliability issues of Gallium Nitride High Electron Mobility Transistors. Int. J. Microw. Wirel. Technol. 2010;2(1):39–50. https://doi.org/10.1017/S1759078710000097
13. Kolkovskiy Yu.V, Kontcevoi Yu.A. Problems of reliability of GaN microwave heterotransistors. (Review). Elektronnaya tekhnika. Seriya 2: Poluprovodnikovye pribory = Electronic Engineering. Series 2. Semiconductor Devices. 2022;4(267): 27–41 (in Russ.). https://elibrary.ru/kacktk
14. Joh J., del Alamo J.A. Critical voltage for electrical degradation of GaN high electron mobility transistors. IEEE Elect. Device Lett. 2008;29(4):287–289. https://doi.org/10.1109/LED.2008.917815
15. Joh J., del Alamo J.A. Mechanisms for electrical degradation of GaN high-electron mobility transistors. In: Proc. of the IEEE Int. Elect. Device Meeting (IEDM), Tech. Dig. 2006. P. 415–418. https://doi.org/10.1109/IEDM.2006.346799
16. Joh J., Xia L., del Alamo J.A. Gate current degradation mechanisms of GaN high electron mobility transistors. In: Proc. of the IEEE Int. Elect. Device Meeting (IEDM). 2007. P. 385–388. http://doi.org/10.1109/IEDM.2007.4418953
17. Meneghesso G., Verzellesi G., Danesin F., et al. Reliability of GaN high-electron-mobility transistors: state of the art and perspectives. IEEE Trans. Device Mater. Reliabil. 2008;8(2):332–343. https://doi.org/10.1109/TDMR.2008.923743
18. Zanoni E., Meneghesso G., Verzellesi G., et al. A review of failure modes and mechanisms of GaN-based HEMTs. In: Proc. of the IEEE Int. Elect. Device Meeting (IEDM). 2007. P. 381–384. https://doi.org/10.1109/IEDM.2007.4418952
19. Minnebaev V.M. Electrical Degradation of GaN heterostructure field-effect transistors. Elektronnaya tekhnika. Seriya 2: Poluprovodnikovye pribory = Electronic Engineering. Series 2. Semiconductor Devices. 2021;3(262):4–24 (in Russ.). https://elibrary.ru/catpkn
20. Charles Kittel. Introduction to Solid State Physics. 8th ed. N.Y.: John Wiley & Sons Inc.; 2005. 703 р.
21. Filippov K.A., Balandin A.A. Self-Heating Effects in GaN/AlGaN Heterostructure Field-Effect Transistors and Device Structure Optimization. In: TechConnet. Briefs. V. 3. Proceed. of the ACRS Nanotech. Conf. 2003;3:333–336.
22. Manoi A., Pomeroy J.W., Killat N., Kuball M. Benchmarking of thermal boundary resistance in AlGaN/GaN HEMTs on SiC substrates: Implications of the nucleation layer microstructure. IEEE Elect. Device Lett. 2010;31(12):1395–1397. https://doi.org/10.1109/LED.2010.2077730
23. Killat N., Montes M., Pomeroy J.W., et al. Thermal Properties of AlGaN/GaN HFETs on Bulk GaN Substrates. IEEE Elect. Device Lett. 2012;33(3):366–368. https://doi.org/10.1109/LED.2011.2179972
24. Rampazzo F., Pierobon R., Pacetta D., et al. Hot carrier aging degradation phenomena in GaN based MESFETs. Microelectron. Reliability. 2004;44(9-11):1375–1380. https://doi.org/10.1016/j.microrel.2004.07.017
25. Wang K., Jiang H., Liao Y., Xu Y., Yan F., Ji X. Degradation Prediction of GaN HEMTs under Hot-Electron Stress Based on ML-TCAD Approach. Electronics. 2022;11(21):3582. https://doi.org/10.3390/electronics11213582
26. Stopel A., Khramtsov A., Katz O., et al. Direct monitoring of hot-carrier accumulated charge in GaN HEMT and PHEMT devices Proc. Of the Int. Conf. on GaAs Manufact. Technol. New Orleans. 2005;14–19. Available from URL: https://cris.tau.ac.il/en/publications/direct-monitoring-of-hot-carrier-accumulated-charge-in-gan-hemt-a
27. Rasel M.A.J., Zhang D., Chen A., Thomas M., House S.D., Kuo W., Watt J., Islam A., Glavin N., Smyth M., Haque A., Wolfe D.E., Pearton S.J. Temperature-Induced Degradation of GaN HEMT: An In situ Heating Study. J. Vacuum Sci. Technol. B. May 2024;42(3):032209. https://doi.org/10.1116/6.0003490
28. Bosi G., Raffo A., Vadalà V., Giofrè R., Crupi G., Vannini G. A Thorough Evaluation of GaN HEMT Degradation under Realistic Power Amplifier Operation. Electronics. 2023;12(13):2939. https://doi.org/10.3390/electronics12132939
29. Dammann M., Baeumler M., Brückner P., et al. Degradation of 0.25 μm GaN HEMTs under high temperature stress test. Microelectron. Reliability. 2015;55(9–10):1667–1671. https://doi.org/10.1016/j.microrel.2015.06.042
30. Joglekar A., Lian C., Baskaran R., et al. Finite Element Analysis of Fabrication- and Operation-Induced Mechanical Stress in AlGaN/GaN Transistors. IEEE Trans. Semiconduct. Manufact. 2016;29(4):349–354. https://doi.org/10.1109/TSM.2016.2600593
31. Klimov A.O. Thermomechanical response study of the FET crystal changing its vertical orientation in Solder. Elektronnaya tekhnika. Seriya 2: Poluprovodnikovye pribory = Electronic Engineering. Series 2. Semiconductor Devices. 2019;2(253):64–71 (in Russ.).
32. Joh J., del Alamo J.A., Langworthy K., Xie S., Zheleva T. Role of stress voltage on structural degradation of GaN highelectron-mobility transistors. Microelectron. Reliability. 2011;51(2):201–206. https://doi.org/10.1016/j.microrel.2010.08.021
33. Morkoc H. Handbook of Nitride Semiconductors and Devices. V. 3. Materials Properties, Physics and Growth. Weinheim: Wiley‐VCH Verlag GmbH & Co; 2008. 850 p. ISBN 978-3-527-40838-2
34. Ancona M.G., Binari S.C., Meyer D.J. Fully coupled thermoelectromechanical analysis of GaN high electron mobility transistor degradation. J. Appl. Phys. 2012;111(7):074504. https://doi.org/10.1063/1.3698492
35. Tsao Y.-F., Wang Y., Chiu P.-H., Hsu H.-T. Reliability Assessment of 60-GHz GaN Power Amplifier Under High-Level Input RF Stress. IEEE Trans. Elect. Devices. 2024;71(7):4087–4092. https://doi.org/10.1109/TED.2024.3397634
36. Han Y., Tang G., Lau B.L. Thermal Characterization and Management of GaN-on-SiC High Power Amplifier MMIC. In: IEEE 73rd Electronic Components and Technology Conference (ECTC). IEEE; 2023. P. 1989–1993. http://doi.org/10.1109/ectc51909.2023.00342
37. Demirtas S., del Alamo J.A. Effect of Trapping on the Critical Voltage for Degradation in GaN High Electron Mobility Transistors. In: IEEE International Reliability Physics Symposium (IRPS). IEEE; 2010. P. 134–138. https://doi.org/10.1109/IRPS.2010.5488838
Supplementary files
|
1. “Magic triangle” of interactions | |
Subject | ||
Type | Исследовательские инструменты | |
View
(110KB)
|
Indexing metadata ▾ |
- The results of the study show that strong electric fields and high specific thermal loading of high-power GaN HFETs can cause physical, polarization, piezoelectric and thermal phenomena that lead to redistribution of mechanical stresses in the active region, degradation of electrical characteristics, and a decrease in the reliability of the transistor as a whole.
- It is shown that the presence of a field-plate and a passivating SiN layer leads to a decrease in the values of mechanical stress in the gate area by 1.3–1.5 times. The effects of thermal degradation in class AB amplifiers are more pronounced than the effects of strong fields in class E amplifiers; moreover, the mean time to failure sharply decreases at GaN HFET active zone temperatures over 320–350°C.
Review
For citations:
Minnebaev V.M. Thermal and mechanical degradation mechanisms in heterostructural field-effect transistors based on gallium nitride. Russian Technological Journal. 2025;13(2):57-73. https://doi.org/10.32362/2500-316X-2025-13-2-57-73. EDN: TTUFNR