Preview

Russian Technological Journal

Advanced search

ALGORITHM OF DETERMINATION OF NON-STATIONARY NONLINEAR SYSTEMS FULL STABILITY AREAS

https://doi.org/10.32362/2500-316X-2017-5-6-55-72

Abstract

The paper proposes a numerical algorithm for constructing piecewise linear Lyapunov functions for investigating the absolute stability of nonlinear nonstationary systems. Such functions define necessary and sufficient conditions for the stability of nonlinear nonstationary systems satisfying sector constraints. In the case of asymptotic stability of the system, the implementation of the algorithm will lead to the construction of the Lyapunov function level set in the form of a polyhedron of dimension equal to the dimension of the original system. Such a polyhedron can be used for constructing a piecewise linear Lyapunov function. The number of faces of the polyhedron increases as the system approaches to the stability boundary in the parameter space, which can lead to unacceptable time costs for calculations. The analysis of specific systems of the 2nd and 3rd order and the results of comparison with classical methods are given. Specific recommendations on the algorithm initial conditions choice are given.

About the Author

V. P. Berdnikov
Moscow Technological University (MIREA)
Russian Federation


References

1. Barabanov A.T., Katkovnik V.Ya., Nelepin R.A., Hlypalo E.I., Yakubovich V.A. Methods for investigating nonlinear automatic control systems / Ed. R.A. Nelepin. Moscow: Nauka Publ., 1975. 448 p. (in Russ.).

2. Yakubovich V.A. Absolute instability of nonlinear control systems. II. Systems with nonstationary nonlinearities. Circle criteria // Avtomatica i telemehanica. (Automation and Remote Control). 1971. № 6. P. 25–34. (in Russ.).

3. Kameneckij V.A. Absolute stability and absolute instability of control systems with several nonlinear nonstationary elements // Avtomatica i telemehanica. (Automation and Remote Control). 1983. № 12. P. 20–30. (in Russ.).

4. Molchanov A.P., Pyatnickij E.S. Lyapunov functions that determine necessary and sufficient conditions for absolute stability of nonlinear time-varying control systems. I // Avtomatica i telemehanica. (Automation and Remote Control). 1986. № 3. P. 63–73. (in Russ.).

5. Molchanov A.P., Pyatnickij E.S. Lyapunov functions that determine necessary and sufficient conditions for absolute stability of nonlinear time-varying control systems. II // Avtomatica i telemehanica. (Automation and Remote Control). 1986. № 4. P. 5–15. (in Russ.).

6. Molchanov A.P., Pyatnickij E.S. Lyapunov functions that determine necessary and sufficient conditions for absolute stability of nonlinear time-varying control systems. III // Avtomatica i telemehanica. (Automation and Remote Control). 1986. № 5. P. 38–49. (in Russ.).

7. Barabanov N.E. The method of calculating the Lyapunov exponent of a differential inclusion // Avtomatica i telemehanica. (Automation and Remote Control). 1989. № 4. P. 53– 58. (in Russ.).

8. Guglielmi N., Laglia L., Protasov V. Polytope Lyapunov functions for stable and for stabilizable LSS // Foundations of Computational Mathematics. 2017. V. 17. № 2. P. 567–623.

9. Emelichev V.A., Kovalyov M.M., Kravcov M.K. Polyhedra, graphs, optimization. Moscow: Nauka Publ., 1981. 344 p. (in Russ.).

10. Barber C. B., Dobkin D. P., Huhdanpaa H. The Quickhull algorithm for convex hulls // ACM Transactions on Mathematical Software. 1995. V. 22. Iss. 4. P. 469–483.

11. Preparata F., Shamos M. Computational Geometry: An Introduction. Moscow: Mir Publ., 1989. 478 p. (in Russ.).

12. Cigler G.M. The theory of polyhedra. Moscow: MCNMO Publ., 2014. 568 p. (in Russ.).

13. Eryomin I.I., Astafev N.N. Introduction to the theory of linear and convex programming. Moscow: Nauka Publ., 1976. 192 p. (in Russ.).

14. Aminov Yu.A. Differential geometry and topology of curves. Moscow: Nauka Publ., 1987. 160 p. (in Russ.).

15. Makarov I.M., Lohin V.M., Manko S.V., Romanov M.P. Intellectual automatic control systems / Ed. I.M. Makarov, V.M. Lohin. Moscow: Fizmatlit Publ., 2001. 576 p. (in Russ.).

16. Barkin A.I. Absolute stability of control systems. Moscow: Librokom Publ., 2012. 176 p. (in Russ.).


Review

For citations:


Berdnikov V.P. ALGORITHM OF DETERMINATION OF NON-STATIONARY NONLINEAR SYSTEMS FULL STABILITY AREAS. Russian Technological Journal. 2017;5(6):55-72. (In Russ.) https://doi.org/10.32362/2500-316X-2017-5-6-55-72

Views: 420


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)