ALGORITHM OF DETERMINATION OF NON-STATIONARY NONLINEAR SYSTEMS FULL STABILITY AREAS
https://doi.org/10.32362/2500-316X-2017-5-6-55-72
Abstract
References
1. Barabanov A.T., Katkovnik V.Ya., Nelepin R.A., Hlypalo E.I., Yakubovich V.A. Methods for investigating nonlinear automatic control systems / Ed. R.A. Nelepin. Moscow: Nauka Publ., 1975. 448 p. (in Russ.).
2. Yakubovich V.A. Absolute instability of nonlinear control systems. II. Systems with nonstationary nonlinearities. Circle criteria // Avtomatica i telemehanica. (Automation and Remote Control). 1971. № 6. P. 25–34. (in Russ.).
3. Kameneckij V.A. Absolute stability and absolute instability of control systems with several nonlinear nonstationary elements // Avtomatica i telemehanica. (Automation and Remote Control). 1983. № 12. P. 20–30. (in Russ.).
4. Molchanov A.P., Pyatnickij E.S. Lyapunov functions that determine necessary and sufficient conditions for absolute stability of nonlinear time-varying control systems. I // Avtomatica i telemehanica. (Automation and Remote Control). 1986. № 3. P. 63–73. (in Russ.).
5. Molchanov A.P., Pyatnickij E.S. Lyapunov functions that determine necessary and sufficient conditions for absolute stability of nonlinear time-varying control systems. II // Avtomatica i telemehanica. (Automation and Remote Control). 1986. № 4. P. 5–15. (in Russ.).
6. Molchanov A.P., Pyatnickij E.S. Lyapunov functions that determine necessary and sufficient conditions for absolute stability of nonlinear time-varying control systems. III // Avtomatica i telemehanica. (Automation and Remote Control). 1986. № 5. P. 38–49. (in Russ.).
7. Barabanov N.E. The method of calculating the Lyapunov exponent of a differential inclusion // Avtomatica i telemehanica. (Automation and Remote Control). 1989. № 4. P. 53– 58. (in Russ.).
8. Guglielmi N., Laglia L., Protasov V. Polytope Lyapunov functions for stable and for stabilizable LSS // Foundations of Computational Mathematics. 2017. V. 17. № 2. P. 567–623.
9. Emelichev V.A., Kovalyov M.M., Kravcov M.K. Polyhedra, graphs, optimization. Moscow: Nauka Publ., 1981. 344 p. (in Russ.).
10. Barber C. B., Dobkin D. P., Huhdanpaa H. The Quickhull algorithm for convex hulls // ACM Transactions on Mathematical Software. 1995. V. 22. Iss. 4. P. 469–483.
11. Preparata F., Shamos M. Computational Geometry: An Introduction. Moscow: Mir Publ., 1989. 478 p. (in Russ.).
12. Cigler G.M. The theory of polyhedra. Moscow: MCNMO Publ., 2014. 568 p. (in Russ.).
13. Eryomin I.I., Astafev N.N. Introduction to the theory of linear and convex programming. Moscow: Nauka Publ., 1976. 192 p. (in Russ.).
14. Aminov Yu.A. Differential geometry and topology of curves. Moscow: Nauka Publ., 1987. 160 p. (in Russ.).
15. Makarov I.M., Lohin V.M., Manko S.V., Romanov M.P. Intellectual automatic control systems / Ed. I.M. Makarov, V.M. Lohin. Moscow: Fizmatlit Publ., 2001. 576 p. (in Russ.).
16. Barkin A.I. Absolute stability of control systems. Moscow: Librokom Publ., 2012. 176 p. (in Russ.).
Review
For citations:
Berdnikov V.P. ALGORITHM OF DETERMINATION OF NON-STATIONARY NONLINEAR SYSTEMS FULL STABILITY AREAS. Russian Technological Journal. 2017;5(6):55-72. (In Russ.) https://doi.org/10.32362/2500-316X-2017-5-6-55-72