Preview

Russian Technological Journal

Advanced search

FARADAY MAGNETOMETER WITH SHERIC POLE PIECES: IDENTIFICATION ZONE WITH A STABLE FORCE FACTOR

https://doi.org/10.32362/2500-316X-2017-5-6-43-54

Abstract

Basic principles and approaches in generation of devices for realization Faraday method are evaluated (for learning magnetic susceptibility of samples). It is noticed that problem exists - it is difficult to identify an operating area to coordinate here samples with a small volume. It was defined a prerequisites for an appearance area with a stable value of magnetic field intensity (induction) gradient of magnetic field. Presence such zone is a necessary but not sufficient condition for presence a zone with a stable value of magnetic forceful factor (as a product of field intensity or pole induction by its gradient). It was shown that developing direction in creating a Faraday magnetometer with a strong permanent magnet which pole surface is faced to sample is impractical because there is no prerequisites for an appearance stable zone both gradient and magnetic forceful factor. A creating Faraday magnetometer with mutually canted coils is hardly practical too. These coils generate magnetic field with a stable gradient but not with a stable magnetic forceful factor. By the example of spheric pole pieces (recommended for using at Faraday magnetometer) presence an areas with stable gradient and magnetic forceful factor is proved (at the range of their extremum values). Range of such areas is defined and compared to each other. It was shown that absciss values of extremum are almost stable (for each distance between pole pieces, regardless of current load), magnetic forceful factor's extremum are close to axis of magnet pole for about 30-40% than gradient's extremum. There were defined the influence of distance between pole pieces on absciss values of extremums of gradient and magnetic forceful factor (a logarithmic dependence) and on their ordinate values (power dependence).

About the Authors

A. V. Sandulyak
Moscow Тechnological University
Russian Federation


A. A. Sandulyak
Moscow Тechnological University
Russian Federation


M. N. Polismakova
Moscow Тechnological University
Russian Federation


D. O. Kiselev
Moscow Тechnological University
Russian Federation


D. A. Sandulyak
Moscow Тechnological University
Russian Federation


References

1. Baskar D., Adler S.B. High temperature Faraday balance for in situ measurement of magnetization in transition metal oxides // Review of Scientific Insruments. 2007. V. 78. P.023908 (1-6).

2. Moze O., Giovanelli L., Kockelmann W., de Groot C.H., Boer F.R., Buschow K.H.J. Structure and magnetic properties of Nd2 Co17-xGax compounds studied by magnetic measurements and neutron diffraction // Journal of Magnetism and Magnetic Materials. 1998. V. 189. P. 329–334.

3. Klaase J.C.P. The Faraday balance, Van der Waals- Zeeman Institute, November 1999, URL: http://www.science.uva.nl/research/cmp/klaasse/fdb.html, as of December 2014.

4. Gaucherand F., Beaugnon E. Magnetic texturing in ferromagnetic cobalt alloys // Physica B. 2004. V. 346-347. P. 262–266.

5. Caignaert V., Maignan A., Pralong V., Hébert S., Pelloquin D. A cobaltite with a room temperature electrical and magnetic transition: YBaCo4 O7 // Solid State Sciences. 2006. V. 8. P. 1160–1163.

6. Zhang C.P., Chaud X., Beaugnon E., Zhou L Crystalline phase transition information induced by high temperature susceptibility transformations in bulk PMP-YBCO superconductor growth in-situ // Physica C. 2015. V. 508. P. 25–30.

7. Bombik A., Leśniewska B., Pacyna A.W. Magnetic susceptibility of powder and singlecrystal TmFeO3 orthoferrite // Journal of Magnetism and Magnetic Materials. 2000. V. 214. P. 243–250.

8. Kobayashi H., Tabuchi M., Shikano M., Kageyama H., Kanno R. Structure, and magnetic and electrochemical properties of layered oxides, Li2 IrO3 // Journal of Materials Chemistry. 2003. V. 13. P. 957–962.

9. Seidov Z., H.-A. Krug von Nidda, Hemberger J., Loidl A., Sultanov G., Kerimova E., Panfilov A. Magnetic susceptibility and ESR study of the covalent-chain antiferromagnets TlFeS2 and TlFeSe2 // Physical Review B. 2002. V. 65. P. 014433 (1-7).

10. Slobinsky D., Borzi R.A., Mackenzie A.P., Grigera S.A. Fast sweep-rate plastic Faraday force magnetometer with simultaneous sample temperature measurement // Review of Scientific Instruments. 2012. V. 83. P. 125104 (1-5).

11. Gopalakrishnan R., Barathan S., Govindarajan D. Magnetic susceptibility measurements on fly ash admixtured cement hydrated with groundwater and seawater // American Journal of Materials Science. 2012. № 2 (1). P. 32–36.

12. Mexner W., Heinemann K. An improved method for relaxation measurements using a Faraday balance // Review of Scientific Instruments. 1993. V. 64 (11). P. 3336–3337.

13. Sandulyak D.A., Sandulyak A.A., Sleptsov V.V., Sandulyak A.V., Kiselev D.O., Matveev V.V. Development of a Combined Empirical and Computational Method of MultipleOperation Magnetic Monitoring of Ferrous Particles // Measurement Techniques. 2016. V. 59. Is. 5. P. 526–531.

14. Сандуляк А.А., Полисмакова М.Н., Ершов Д.В., Сандуляк А.В., Ершова В.А., Сандуляк Д.А. Функциональная экстраполяция массово-операционной характеристики магнитофореза как основа прецизионного метода контроля ферро-частиц // Измерительная техника. 2010. № 8. С. 57–60. Sandulyak A.A., Polismakova M.N., Ershov D.V., Sandulyak А.V., Ershova V.А., Sandulyak D.А. Functional extrapolation of the mass-operational characteristic of magnetophoresis as a basis for a precision method of monitoring ferroparticles // Measurement Techniques. 2010. V. 53. Is. 8. P. 914–918.

15. Sandulyak A.A., Sandulyak A.V., Belgacem F.B.M., Kiselev D. Special solutions for magnetic separation problems using force and energy conditions for ferroparticles capture // Journal of Magnetism and Magnetic Materials. 2016. V. 401. P. 902–905.

16. Sandulyak A.A., Sandulyak A.V., Ershova V.A. Use of the magnetic test-filter for magnetic control of ferroimpurities of fuels, oils, and other liquids (phenomenological and physical models) // Journal of Magnetism and Magnetic Materials. 2017. V. 426. P. 714–720.

17. Sandulyak A.A., Sandulyak A.V., Polismakova M.N. Alternatives of multiparameter expressions for filtration magnetophoresis efficiency // International Journal of Applied Physics. 2016. V. 1. P. 62–68.

18. Franzreb M., Siemann-Herzberg M., Hobley T. J., Thomas O.R.T. Protein purification using magnetic adsorbent particles // Applied Microbiology and Biotechnology. 2006. V. 70. P. 505–516.

19. Sandulyak D.A., Snedkov A.B, Sandulyak A.A., Sandulyak A.V., Ablaeva A.E. Functional properties of granular and quasi-granular ferromagnetic material (filter-matrix) in magnetophoresis technology // Proceedings of the International Conference on «Materials Engineering for Advanced Technologies». London. June 2015. P. 663–665.

20. Blach T.P., Gray E.MacA. A Faraday magnetometer for studying interstitially modified ferro-magnets // Meas. Sci. Technol. 1994. V. 5. P. 1221–1225.

21. Riminucci A., Uhlarz M., De Santis R., Herrmannsdörfer T. Analytical balance-based Faraday magnetometer // Journal of Applied Physics. 2017. V. 121. P. 094701 (1-5).

22. Hosu B.G., Jakab K., Bánki P., Tóth F.I., Forgacs G. Magnetic tweezers for intracellular applications // Review of Scientific Instruments. 2003. V. 74. № 9. P. 4158–4163.

23. Marcon P., Ostanina K. Overview of methods for magnetic susceptibility measurement // PIERS Proceedings, Malaysia, Kuala Lumpur. March 27-30, 2012. P. 420–424.

24. Reutzel S., Herlach D.M. Measuring magnetic susceptibility of undercooled co-based alloys with a Faraday balance // Advanced Engineering Materials. 2001. V. 3. № 1–2. P. 65–67.

25. Сандуляк А.А., Сандуляк А.В., Полисмакова М.Н., Киселев Д.О., Сандуляк Д.А. Подход к координации малообъемного образца при реализации пондеромоторного метода определения его магнитной восприимчивости // Российский технологический журнал. 2017. Т. 5. №2. С. 57–69. Sandulyak A.A., Sandulyak A.V., Polismakova M.N., Kiselev D.O., Sandulyak D.А. An approach for choosing positioning of small volume sample at instantiation ponderomotive Faraday method in determining its magnetic susceptibility // Rossiyskiy tekhnologicheskiy zhurnal (Russian Technological Journal). 2017. № 2. P. 57–69. (in Russ.).

26. Govindarajan D., Gopalakrishnan R. Magnetic susceptibility measurements on metakaolin admixtured cement hydrated with ground water and sea water // International Journal of Minerals, Metallurgy and Materials. 2009. V. 16. № 3. P. 349–354.

27. Cape J.A., Young R.A. Canted Helmholtz coils for constant-gradient Faraday balance magnetometry // Review of Scientific Instruments. 1971. V. 42. № 7. P. 1061–1063.

28. Finot E., Thundat T., Lesniewska E., Goudonnet J.P. Measuring magnetic susceptibilities of nanogram quantities of materials using microcantilevers // Ultramicroscopy. 2001. V. 86. P. 175–180.


Review

For citations:


Sandulyak A.V., Sandulyak A.A., Polismakova M.N., Kiselev D.O., Sandulyak D.A. FARADAY MAGNETOMETER WITH SHERIC POLE PIECES: IDENTIFICATION ZONE WITH A STABLE FORCE FACTOR. Russian Technological Journal. 2017;5(6):43-54. (In Russ.) https://doi.org/10.32362/2500-316X-2017-5-6-43-54

Views: 572


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)