Preview

Russian Technological Journal

Advanced search

A mathematical model of the gravitational potential of the planet taking into account tidal deformations

https://doi.org/10.32362/2500-316X-2024-12-2-77-89

Abstract

Objectives. This paper investigates the gravitational potential of a viscoelastic planet moving in the gravitational field of a massive attracting center (star), a satellite and one or more other planets moving in Keplerian elliptical orbits relative to the attracting center. Celestial bodies other than a viscoelastic planet are modeled by material points. Within the framework of the linear model of the theory of viscoelasticity, the problem of finding the vector of elastic displacement has been resolved. Traditionally, a solid body model is used to determine the Earth’s gravitational field, while tidal deformations are taken into account in the form of small corrections to the coefficients of the geopotential model. In this work, the viscoelastic ball model is used to take into account tidal effects. The relevance of the research topic is associated with high-precision forecasting of the movement of artificial satellites of the Earth, high-precision measurement of the Earth’s gravitational field.
Methods. In this study the asymptotic and analytical methods developed by V.G. Vilke are used for mechanical systems containing viscoelastic elements of high rigidity, as well as methods of classical mechanics, mathematical analysis. The graphs were plotted using the Octave mathematical package.
Results. After resolving the quasi-static problem of elasticity theory by calculating triple integrals over a spherical area, a formula for the gravitational potential of a deformable planet was obtained. In addition, the gravitational potential of the Earth was also calculated taking into account solid-state tidal effects from the Moon, Sun, and Venus at an external point. Graphs were constructed to show the dependence of the Earth’s gravitational potential on time.

Conclusions. The theoretical and numerical results established herein show that the main contribution to the gravitational potential of the Earth is made by the Moon and the Sun. The influence of other planets in the solar system is small. The value of the gravitational potential at the outer point of the Earth, taking into account tidal effects, depends both on the position of the point in the moving coordinate system and on the relative position of celestial bodies.

About the Authors

А. V. Shatina
MIREA – Russian Technological University
Russian Federation

Albina V. Shatina, Dr. Sci. (Phys.-Math.), Professor, Department of Higher Mathematics, Institute of Artificial Intelligence

78, Vernadskogo pr., Moscow, 119454



A. S. Borets
MIREA – Russian Technological University
Russian Federation

Alexandra S. Borets, Postgraduate Student, Department of Higher Mathematics, Institute of Artificial Intelligence

78, Vernadskogo pr., Moscow, 119454 



References

1. Molodenskii M.S Izbrannye trudy. Gravitatsionnoe pole. Figura i vnutrennee stroenie Zemli (Selected Works. Gravitational Field. The Figure and Internal Structure of the Earth). Moscow: Nauka; 2001. 569 p. (in Russ.). ISBN 5-02-002331-0

2. Molodenskii S.M. Prilivy, nutatsiya i vnutrennee stroenie Zemli (Tides, Nutation and the Internal Structure of the Earth). Moscow: Institut fiziki Zemli im. O.Yu. Shmidta; 1984. 215 p. (in Russ.).

3. Efroimsky M., Williams J.G. Tidal torques. A critical review of some techniques. Celest. Mech. Dyn. Astr. 2009;104(3): 257–289. https://doi.org/10.1007/s10569-009-9204-7

4. Darwin G.H. Prilivy i rodstvennye im yavleniya v Solnechnoi sisteme (Tides and Kindred Phenomena in the Solar System): transl. from Engl. Moscow: Nauka; 1965. 252 p. (in Russ.). [Darwin G.H. The Tides and Kindred Phenomena in the Solar System. Boston: Houghton; 1899. 378 p.]

5. Zharkov V.N. (Ed.). Prilivy i rezonansy v Solnechnoi sisteme: sbornik statei (Tides and Resonances in the Solar System: a collection of articles). Moscow: Mir; 1975. 288 p. (in Russ.).

6. Petit G., Luzum B. (Eds.). IERS Conventions (2010). IERS Technical Note 36. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie; 2010. 179 p. ISBN 3-89888-989-6

7. Vil’ke V.G. Motion of a visco-elastic sphere in a central Newtonian force field. J. Appl. Math. Mech. 1981;44:280–284. [Original Russian Text: Vil’ke V.G. Motion of a visco-elastic sphere in a central Newtonian force field. Prikladnaya Matematika i Mekhanika. 1980;44(3):395–402 (in Russ.).]

8. Makarov V.V., Berghea C., Efroimsky M. Dynamical evolution and spin-orbit resonances of potentially habitable exoplanets. The case of GJ 581d. Astrophys. J. 2012;761(2):83–96. https://doi.org/10.1088/0004-637X/761/2/83

9. Sidorenkov N.S. Fizika nestabil’nostei vrashcheniya Zemli (Physics of Earth Rotation Instabilities). Moscow: Fizmatlit; 2002. 384 p. (in Russ.). ISBN 5-9221-0244-3

10. Baranova E.Yu., Vil’ke V.G. Rotation of elastic sphere around its center of mass in the gravitational field of two attractive centers. Moscow Univ. Mech. Bulletin. 2014;69(3):57–64. https://doi.org/10.3103/S0027133014030017 [Original Russian Text: Baranova E.Yu., Vil’ke V.G. Rotation of elastic sphere around its center of mass in the gravitational field of two attractive centers. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika. 2014;3:33–40 (in Russ.).]

11. Markov Yu.G., Perepelkin V.V., Rykhlova L.V., Filippova A.S. A Numerical-analytical approach to modeling the axial rotation of the Earth. Astron. Rep. 2018;62(4):299–308. https://doi.org/10.1134/S1063772918040042 [Original Russian Text: Markov Yu.G., Perepelkin V.V., Rykhlova L.V., Filippova A.S. Numerical-analytical approach to modeling the axial rotation of the Earth. Astronomicheskii Zhurnal. 2018;95(4):317–326 (in Russ.). https://doi.org/10.7868/S0004629918040047 ]

12. Sidorenkov N.S. Celestial-mechanical factors of the weather and climate change. Geofizicheskie protsessy i biosfera = Geophysical Processes and Biosphere. 2015;14(3):5–26 (in Russ.).

13. Sottili G., Martino S., Palladino D.M., Paciello A., Bozzano F. Effects of tidal stresses on volcanic activity at Mount Etna, Italy. Geophys. Res. Lett. 2007;34(1):L01311. https://doi.org/10.1029/2006GL028190

14. Aksenov E.P. Teoriya dvizheniya iskusstvennykh sputnikov Zemli (Theory of Motion of Artificial Earth Satellites). Moscow: Nauka; 1977. 360 p. (in Russ.).

15. Okhotsimskii D.E., Sikharulidze Yu.G. Osnovy mekhaniki kosmicheskogo poleta (Fundamentals of Space Flight Mechanics). Moscow: Nauka; 1990. 448 p. (in Russ.). ISBN 5-02-014090-2

16. Bordovitsyna T.V., Avdyushev V.A. Teoriya dvizheniya iskusstvennykh sputnikov Zemli. Analiticheskie i chislennye metody (Theory of Motion of Artificial Earth Satellites. Analytical and Numerical Methods). Tomsk: TSU; 2016. 254 p. (in Russ.). ISBN 978-5-9462-1607-4

17. Gusev I.V. Assessment of tidal effects on low Earth orbit satellites. Izvestiya vysshikh uchebnykh zavedenii. Geodeziya i aehrofotosemka = Izvestia VUZOV. Geodesy and Aerophotography. 2013;57(2):18–24 (in Russ.).

18. Vil’ke V.G. Analiticheskie i kachestvennye metody mekhaniki sistem s beskonechnym chislom stepenei svobody (Analytical and Qualitative Methods of Mechanics of Systems with an Infinite Number of Degrees of Freedom). Moscow: URSS; 2023. 200 p. (in Russ.). ISBN 978-5-9710-3847-4

19. Borets A.S., Shatina A.V. Gravitational potential of a planet modeled by a visco-elastic sphere. J. Phys.: Conf. Ser. 2020;1705:012001. https://doi.org/10.1088/1742-6596/1705/1/012001

20. Borets A.S., Shatina A.V. Mathematical model of the gravitational potential of the planet taking into account dissipation. In: Fundamental’nye, poiskovye, prikladnye issledovaniya i innovatsionnye proekty sbornik trudov Natsionalnoi nauchno- prakticheskoi konferentsii = Fundamental, Exploratory, Applied Research and Innovative Projects: Proceedings of the National Scientific and Practical Conference. Moscow: MIREA; 2022. P. 132–136 (in Russ.).

21. Vil’ke V.G. Teoreticheskaya mekhanika: uchebnik i praktikum dlya vuzov (Theoretical Mechanics: Textbook and Workshop for Universities). Moscow: Yurait; 2023. 311 p. (in Russ.). ISBN 978-5-5340-3481-3

22. Vil’ke V.G., Shatina A.V. Translational–Rotational Motion of a Viscoelastic Sphere in Gravitational Field of an Attracting Center and a Satellite. Cosmic Research. 2004;42(1):91–102. https://doi.org/10.1023/B:COSM.0000017567.89445.aa [Original Russian Text: Vil’ke V.G., Shatina A.V. Translational–Rotational Motion of a Viscoelastic Sphere in Gravitational Field of an Attracting Center and a Satellite. Kosmicheskie Issledovaniya. 2004;42(1):95–106 (in Russ.).]

23. Murray C.D., Dermott S.F. Dinamika Solnechnoi sistemy (Solar System Dynamics). Moscow: Fizmatlit; 2010. 588 p. (in Russ.). ISBN 978-5-9221-1121-8 [Murray C.D., Dermott S.F. Solar System Dynamics. Cambridge University Press; 2000. 592 p. ISBN 9781139174817. http://doi.org/10.1017/cbo9781139174817 ]


Supplementary files

1. Task statement
Subject
Type Исследовательские инструменты
View (42KB)    
Indexing metadata ▾
  • The gravitational potential of a viscoelastic planet moving in the gravitational field of a massive attracting center (star), a satellite and one or more other planets moving in Keplerian elliptical orbits relative to the attracting center is investigated.
  • A formula for the gravitational potential of a deformable planet was obtained. In addition, the gravitational potential of the Earth was also calculated taking into account solid-state tidal effects from the Moon, Sun and Venus at an external point.
  • The theoretical and numerical results established herein show that the main contribution to the gravitational potential of the Earth is made by the Moon and the Sun. The influence of other planets in the solar system is small.

Review

For citations:


Shatina А.V., Borets A.S. A mathematical model of the gravitational potential of the planet taking into account tidal deformations. Russian Technological Journal. 2024;12(2):77–89. https://doi.org/10.32362/2500-316X-2024-12-2-77-89

Views: 729


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)