Magnetorefractive effect in metallic Co/Pt nanostructures
https://doi.org/10.32362/2500-316X-2024-12-2-57-66
Abstract
Objectives. To carry out a theoretical investigation of the features of magnetorefractive effect for metal-to-metal nanostructures. This study uses the example of multilayer Co/Pt nanostructures (ferromagnetic metal–paramagnetic metal) with a different ratio of ferromagnetic and paramagnetic phases in the visible and near-infrared (IR) spectral regions.
Methods. The dependence was expressed explicitly using the basic formulas for permittivity, refraction and extinction coefficients, and optical conductivity. This then confirms the common nature of these two effects. The magnetorefractive effect for s-polarization of light was calculated using Fresnel formulas for a three-layer structure. This took into account the thickness of the samples and the influence of the substrate. Effective medium methods were used to calculate the dielectric permittivity of materials. Since the average range of cobalt concentrations was being studied, the Bruggeman approximation was used to establish the effective permittivity of nanostructures. The reflection coefficient at normal incidence was calculated for all nanostructures.
Results. Since the permittivity of inhomogeneous samples was replaced by a common effective parameter depending on the permittivity of each component, we were able to apply the Drude–Lorentz theory for conductors in a high-frequency alternating field and then estimate the parameters of the electronic structure of the samples being studied. Plasma and relaxation frequencies were calculated for each sample. This made it possible for the number of free electrons to be estimated and scattering in nanostructures to be investigated.
Conclusions. It was shown that Langmuir shielding can be observed in the given energy range in the IR region of the spectrum. The calculated values correlate well with the experimental data.
About the Authors
А. N. YurasovRussian Federation
Alexey N. Yurasov, Dr. Sci. (Phys.-Math.), Professor, Department of Nanoelectronics, Institute for Advanced Technologies and Industrial Programming
78, Vernadskogo pr., Moscow, 119454
D. A. Sayfulina
Russian Federation
Diana A. Sayfulina, Student, Institute for Advanced Technologies and Industrial Programming
78, Vernadskogo pr., Moscow, 119454
Т. N. Bakhvalova
Russian Federation
Tatiana N. Bakhvalova, Teacher, Department of Nanoelectronics, Institute for Advanced Technologies and Industrial Programming
78, Vernadskogo pr., Moscow, 119454
References
1. Granovsky А., Sukhorukov Yu., Gan’shina E., Telegin A. Magnetorefractive effect in magnetoresistive materials. In: Magnetophotonics: From Theory to Applications. Berlin Heidelberg: Springer; 2013. Р. 107–133. http://doi.org/10.1007/978-3-642-35509-7_5
2. Shkurdoda Yu.O., Dekhtyaruk L.V., Basov A.G., Chornous A.M., Shabelnyk Yu.M., Kharchenko A.P., Shabelnyk T.M. The giant magnetoresistance effect in Co/Cu/Co three-layer films. J. Magn. Magn. Mater. 2019;477:88–91. https://doi.org/10.1016/j.jmmm.2019.01.040
3. Dekhtyaruk L.V., Kharchenko A.P., Klymenko Yu.O., Shkurdoda Yu.O., Shabelnyk Yu.M., Bezdidko O.V., Chornous A.M. Negative and Positive Effect of Giant Magnetoresistance in The Magnetically Ordered Sandwich. In: 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP). 2020. P. 01NMM13-1–01NMM13-3. https://doi.org/10.1109/NAP51477.2020.9309694
4. Kelley C.S., Naughton J., Benson E., Bradley R.C., Lazarov V.K., Thompson S.M., Matthew J.A. Investigating the magnetic field-dependent conductivity in magnetite thin films by modelling the magnetorefractive effect. J. Phys.: Condens. Matter. 2014;26(3):036002. http://doi.org/10.1088/0953-8984/26/3/036002
5. Lysina E.A., Yurasov A.N. Magneto-optical effects in CoSiO2 nanocomposite. In: Informatika i tekhnologii. Innovatsionnyye tekhnologii v promyshlennosti i informatike (MNTK FTI 2017) (Informatics and Technologies. Innovative Technologies in Industry and Informatics). Moscow: MIREA; 2017. Р. 622–628 (in Russ.).
6. Lobov I.D., Kirillova M.M., Makhnev A.A., et al. Magnetooptical, optical, and magnetotransport properties of Co/Cu superlattices with ultrathin cobalt layers. Phys. Solid State. 2017;59(1):53–62. https://doi.org/10.1134/S1063783417010206 [Original Russian Text: Lobov I. D. Kirillova M.M., Makhnev A.A., Romashev L.N., Korolev A.V., Milyaev M.A., Proglyado V.V., Bannikova N.S., Ustinov V.V. Magnetooptical, optical, and magnetotransport properties of Co/Cu superlattices with ultrathin cobalt layers. Fizika Tverdogo Tela. 2017;59(1):54–62 (in Russ.). https://doi.org/10.21883/FTT.2017.01.43950.161 ]
7. Oh J., Humbard L., Humbert V., Sklenar J., Mason N. Angular evolution of thickness-related unidirectional magnetoresistance in Co/Pt multilayers. AIP Advances. 2019;9(4):045016. https://doi.org/10.1063/1.5079894
8. Kawaguchi M., Towa D., Lau Y.-C., Takahashi S., Hayashi M. Anomalous spin Hall magnetoresistance in Pt/Co bilayers. Appl. Phys. Lett. 2018;112(20):202405. https://doi.org/10.1063/1.5021510
9. Heigl M., Wendler R., Haugg S.D., Albrecht M. Magnetic properties of Co/Ni-based multilayers with Pd and Pt insertion layers. J. Appl. Phys. 2020;127(23):233902. https://doi.org/10.1063/5.0010112
10. Povzner A.A., Volkov A.G., Filanovich A.N. Electronic structure and magnetic susceptibility of nearly magnetic metals (palladium and platinum). Phys. Solid State. 2010;52(10):2012–2018. https://doi.org/10.1134/S1063783410100021 [Original Russian Text: Povzner A.A., Volkov A.G., Filanovich A.N. Electronic structure and magnetic susceptibility of nearly magnetic metals (palladium and platinum). Fizika Tverdogo Tela. 2010;52(10):1879–1884 (in Russ.).]
11. Yurasov A.N., Telegin A.V., Bannikova N.S., et al. Features of Magnetorefractive Effect in a [CoFe/Cu]n Multilayer Metallic Nanostructure. Phys. Solid State. 2018;60(2):281–287. https://doi.org/10.1134/S1063783418020300 [Original Russian Text: Yurasov A.N., Telegin A.V., Bannikova N.S., Milyaev M.A., Sukhorukov Yu.P. Features of Magnetorefractive Effect in a [CoFe/Cu]n Multilayer Metallic Nanostructure. Fizika Tverdogo Tela. 2018;60(2):276–282 (in Russ.). https://doi.org/10.21883/FTT.2018.02.45381.201 ]
12. Lobov I.D., Kirillova M.M., Romashev L.N., et al. Magnetorefractive effect and giant magnetoresistance in Fe(tx)/Cr superlattices. Phys. Solid State. 2009;51(12):2480–2485. https://doi.org/10.1134/S1063783409120099 [Original Russian Text: Lobov I.D., Kirillova M.M., Romashev L.N., Milyaev M.A., Ustinov V.V. Magnetorefractive effect and giant magnetoresistance in Fe(tx)/Cr superlattices. Fizika Tverdogo Tela. 2009;51(12):2337–2341 (in Russ.).]
13. Pogodaeva M.K., Levchenko S.V., Drachev V.P., Gabitov I.R. Optical properties of metals from the first principles. Photon Express. 2021;6(174):294–295 (in Russ.).
14. Ustinov V.V., Sukhorukov Yu.P., Milyaev M.A., et al. Magnetotransmission and magnetoreflection in multilayer FeCr nanostructures. J. Exp. Theor. Phys. 2009;108(2):260–266. https://doi.org/10.1134/S1063776109020083 [Original Russian Text: Ustinov V.V., Sukhorukov Yu.P., Milyaev M.A., Granovskii A.B., Yurasov A.N., Gan’shina E.A., Telegin A.V. Magnetotransmission and magnetoreflection in multilayer FeCr nanostructures. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki. 2009;135(2):293–300 (in Russ.).]
15. Jacquet J.C., Valet T. A new magnetooptical effect discovered on magnetic multilayers: The magnetorefractive effect. MRS Online Proceedings Library (OPL). 1995;384:477–490. https://doi.org/10.1557/PROC-384-477
16. Kravets V.G. Correlation between the magnetoresistance, IR magnetoreflectance, and spin-dependent characteristics of multilayer magnetic films. Phys. Res. Int. 2012;2012(5):323279. https://doi.org/10.1155/2012/323279
17. Maevskii V.M. Theory of magneto-optical effects in multilayer systems with arbitrary orientation of magnetization. Fizika metallov i metallovedenie = Physics of Metals and Metallography). 1985;59:213–216 (in Russ.).
18. Yurasov A.N. Magnetorefractive effect in nanostructures. Pribory = Instruments. 2022;4(262):22–25 (in Russ.).
Supplementary files
|
1. Spectral dependencies of the real (ε1) and imaginary (ε2) parts of the complex dielectric permittivity for different volume concentrations of cobalt | |
Subject | ||
Type | Исследовательские инструменты | |
View
(21KB)
|
Indexing metadata ▾ |
- A theoretical investigation of the features of magnetorefractive effect for metal-to-metal nanostructures. This study uses the example of multilayer Co/Pt nanostructures (ferromagnetic metal–paramagnetic metal) with a different ratio of ferromagnetic and paramagnetic phases in the visible and near-infrared spectral regions was conducted.
- Plasma and relaxation frequencies were calculated for each sample. This made it possible for the number of free electrons to be estimated and scattering in nanostructures to be investigated.
- It is shown that Langmuir shielding can be observed in the given energy range in the infrared region of the spectrum.
Review
For citations:
Yurasov А.N., Sayfulina D.A., Bakhvalova Т.N. Magnetorefractive effect in metallic Co/Pt nanostructures. Russian Technological Journal. 2024;12(2):57–66. https://doi.org/10.32362/2500-316X-2024-12-2-57-66