Synchrotron radiation of a single electron application for optical spectroradiometry
https://doi.org/10.32362/2500-316X-2023-11-5-71-80
Abstract
Objectives. The investigations of optical radiation sources and metrological detector characteristics in the infrared (IR), visible, and air ultraviolet (UV) spectral regions are partially based on the unique metrological properties of synchrotron radiation. The aim of this work is to develop a high-precision method for determining the storage ring accelerated electron number with synchrotron radiation of a single electron to establish spectroradiometry and photometry units.
Methods. By determining the number of accelerated electrons, any storage ring can be used to calculate the synchrotron radiation characteristics at wavelengths of many large then the critical wavelength in the visible, air UV, and IR regions of the spectrum. This makes it possible to determine the main metrological characteristics normalized to the number of electrons, such as luminous intensity, luminance, illuminance, radiant power, radiance, irradiance, etc., regardless of the energy of the electrons.
Results. When applying the method for determining the number of accelerated electrons at low currents of the electronic storage ring, a total standard deviation of the number of accelerated electrons is less than 0.01% for an exposure range of the CCD matrix from 10−2 to 3 · 103 s in a wide dynamic range of 1−1010 electrons per orbit.
Conclusions. The use of a CCD-based radiometer-comparator calibrated by responsivity on a synchrotron radiation source is particularly relevant in monitoring luminance contrast thresholds and spatial distribution of object and background brightness, as well as determining metrological characteristics of optoelectronic measuring instruments, including CCD cameras, radiometers, spectroradiometers and photometers.
About the Authors
A. S. SigovRussian Federation
Alexander S. Sigov, Academician of the RAS, Dr. Sci. (Phys.-Math.), Professor, President
78, Vernadskogo pr., Moscow, 119454
ResearcherID L-4103-2017
Scopus Author ID 35557510600
Competing Interests:
The authors declare no conflicts of interest.
E. R. Lazarenko
Russian Federation
Evgenij R. Lazarenko, Deputy Head of the Federal Agency for Technical Regulation and Metrology
10/2, Presnenskaya nab., Moscow, 125039
Competing Interests:
The authors declare no conflicts of interest.
N. B. Golovanova
Russian Federation
Natalia B. Golovanova, Dr. Sci. (Econ.), Deputy First Vice-Rrector
78, Vernadskogo pr., Moscow, 119454
Scopus Author ID 57191447039
Competing Interests:
The authors declare no conflicts of interest.
O. A. Minaeva
Russian Federation
Olga A. Minaeva, Dr. Sci. (Eng.), Head of the Department of Metrology and Standardization, Institute of Advanced Technologies and Industrial Programming
78, Vernadskogo pr., Moscow, 119454
Scopus Author ID 6603019847
Competing Interests:
The authors declare no conflicts of interest.
S. I. Anevsky
Russian Federation
Sergei I. Anevsky, Dr. Sci. (Eng.), Professor, Department of Metrology and Standardization, Institute of Advanced Technologies and Industrial Programming
78, Vernadskogo pr., Moscow, 119454
Competing Interests:
The authors declare no conflicts of interest.
R. V. Minaev
Russian Federation
Roman V. Minaev, Cand. Sci. (Eng.), Head of the Research Department
5, 26 Bakinskikh Komissarov ul., Moscow, 119571
Scopus Author ID 22235214600
Competing Interests:
The authors declare no conflicts of interest.
P. Yu. Pushkin
Russian Federation
Pavel Yu. Pushkin, Cand. Sci. (Eng.), Director of the Institute of Advanced Technologies and Industrial Programming
78, Vernadskogo pr., Moscow, 119454
Competing Interests:
The authors declare no conflicts of interest.
References
1. El’kin G.I., Salamatov V.Yu., Krutikov V.N., NovikovN.Yu. The state and main directions of work in the field of ensuring the uniformity of measurements in the Russian Federation. Zakonodatel’naya i prikladnaya metrologiya = Legislative and Applied Metrology. 2010;3:5–10 (in Russ.). Available from URL: https://metrob.ru/html/Stati/metrolob/napravlenia.html
2. Anevskii S.I., Minaeva O.A., Krutikov V.N., Minaev R.V., et al. Metrological Support of Nanotechnologies and Nanoindustry Products. Moscow: Logos; 2011. 592 p. (in Russ.).
3. Richter M., Ulm G. Metrology with Synchrotron Radiation. In: Jaeschke E., Khan S., Schneider J., Hastings J. (Eds.). Synchrotron Light Sources and Free-Electron Lasers. Springer; 2020. P. 1–35. https://doi.org/10.1007/978-3-319-04507-8_63-1
4. Shevelko A.P. Spectral instruments for x-ray and VUV plasma diagnostics. J. Phys.: Conf. Ser. 2018;1115(2):022042. http://doi.org/10.1088/1742-6596/1115/2/022042
5. Torretti F., Liu F., Bayraktar M., Scheers J., Bouza Z., Ubachs W., Hoekstra R., Versolato O. Spectral characterization of an industrial EUV light source for nanolithography. J. Phys. D: Appl. Phys.2019;53(5):055204. http://doi.org/10.1088/1361-6463/ab56d4
6. Berni L.Â., Vilela W.A., Beloto A.F., de Sena F.O. System for measuring the angular response of radiometers. In: Proc. 8th Iberoamerican Optics Meeting and 11th Latin American Meeting on Optics, Lasers, and Applications. 2013. V. 8785. https://doi.org/10.1117/12.2019888
7. Fryc I. Spectral correction of detector used in illuminance measurements. In: Proc. 11th Slovak-Czech-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics (SPIE 3820). 1999. V. 3820. P. 343–348. https://doi.org/10.1117/12.353083
8. Han L. The principle and characteristics of photoelectric sensors. Science and Technology Innovation and Application. 2020;10:77–78.
9. Lutz W. The CCPR K2.c key comparison of spectral responsivity from 200 nm to 400 nm. Metrologia. 2014;51(6):S336. http://doi.org/10.1088/0026-1394/51/6/S336
10. Anevskii S.I., Zolotarevskii Y.M., Ivanov V.S., et al. Spectroradiometry of ultraviolet radiation. Meas. Tech. 2016;28(11):1216–1222. http://doi.org/10.1007/s11018-016-0873-9 [Original Russian Text: Anevskii S.I., Zolotarevskii Yu.M., Ivanov V.S., Krutikov V.N., Minaeva O.A., Minaev R.V. Spectroradiometry of ultraviolet radiation. Izmeritel’’naya Tekhnika. 2015;11:26–30 (in Russ.).]
11. König S., Gutschwager B., Taubert R.D., Hollandt J. Metrological Сharacterization and Сalibration of Thermographic Cameras for Quantitative temperature measurement. Sens. Sens. Syst. 2020;9(2):425–442. https://doi.org/10.5194/jsss-9-425-2020
12. Gottwald A., Krumrey M., Scholze F., et al. Metrology with synchrotron radiation at PTB. Eur. Phys. J. Plus. 2022;137(11):1238. https://doi.org/10.1140/epjp/s13360-022-03417-9
13. Woods S., Neira J., Proctor J., Rice J., Tomlin N., White M., Stephens M., Lehman J. Generalized Electrical Substitution Methods and Detectors for Absolute Optical Power Measurements. Metrologia. 2022;59(4):044002. https://doi.org/10.1088/1681-7575/ac72dc
14. Anevsky S., Ivanov V., Kuznetsov V., Minaeva O., et al. Primary UV-radiation detector standards. Metrologia. 2003;40(1):S25. http://doi.org/10.1088/0026-1394/40/1/307
15. Sigov A.S., Minaeva O.A., Anevsky S.I., Lebedev A.M., Minaev R.V. Metrological studies of the characteristics of multilayer surface coatings using synchrotron radiation. Russ. Technol. J. 2021;9(1):38–47 (in Russ.). https://doi.org/10.32362/2500-316X-2021-9-1-38-47
16. Sigov A.S., Golovanova N.B., Minaeva O.A., Anevsky S.I., Shamin R.V., Ostanina O.I. Solution of topical specroradiometric problems using synchrotron radiation. Russ. Technol. J. 2022;10(3):34–44 (in Russ.). https://doi.org/10.32362/2500-316X-2022-10-3-34-44
17. Schwinger J. On the Classical Radiarion of Accelerated Electrons. Phys. Rev. 1949;75(12):1912. https://doi.org/10.1103/PhysRev.75.1912
18. Wiedemann H. Particle Accelerator Physics. Springer Science & Business Media; 2007. P. 815–894.
19. Anevskii S.I., Zolotarevskii Y.M., Krutikov V.N., et al. The Use of a Standard Source of Synchrotron Radiation for Calibration of the Sensitivity of a Telescope with CCD Array and High Angular Resolution. Meas. Tech. 2015;58(5):520–525. https://doi.org/10.1007/s11018-015-0747-6 [Original Russian Text: Anevskii S.I., Zolotarevskii Yu.M., Krutikov V.N., Lebedev A.M., Minaev R.V., Senin D.S., Stankevich V.G. The Use of a Standard Source of Synchrotron Radiation for Calibration of the Sensitivity of a Telescope with CCD Array and High Angular Resolution Izmeritel’naya Tekhnika. 2015;5:33–36 (in Russ.).]
Supplementary files
|
1. Distribution of the CCD-matrix pixel signals | |
Subject | ||
Type | Исследовательские инструменты | |
View
(22KB)
|
Indexing metadata ▾ |
- The study aimed to develop a high-precision method for determining the storage ring accelerated electron number with synchrotron radiation of a single electron to establish spectroradiometry and photometry units.
- The use of a CCD-based radiometer-comparator calibrated by responsivity on a synchrotron radiation source is particularly relevant in monitoring luminance contrast thresholds and spatial distribution of object and background brightness, as well as determining metrological characteristics of optoelectronic measuring instruments, including CCD cameras, radiometers, spectroradiometers and photometers.
Review
For citations:
Sigov A.S., Lazarenko E.R., Golovanova N.B., Minaeva O.A., Anevsky S.I., Minaev R.V., Pushkin P.Yu. Synchrotron radiation of a single electron application for optical spectroradiometry. Russian Technological Journal. 2023;11(5):71-80. https://doi.org/10.32362/2500-316X-2023-11-5-71-80