Preview

Russian Technological Journal

Advanced search

Synchrotron radiation of a single electron application for optical spectroradiometry

https://doi.org/10.32362/2500-316X-2023-11-5-71-80

Abstract

Objectives. The investigations of optical radiation sources and metrological detector characteristics in the infrared (IR), visible, and air ultraviolet (UV) spectral regions are partially based on the unique metrological properties of synchrotron radiation. The aim of this work is to develop a high-precision method for determining the storage ring accelerated electron number with synchrotron radiation of a single electron to establish spectroradiometry and photometry units.

Methods. By determining the number of accelerated electrons, any storage ring can be used to calculate the synchrotron radiation characteristics at wavelengths of many large then the critical wavelength in the visible, air UV, and IR regions of the spectrum. This makes it possible to determine the main metrological characteristics normalized to the number of electrons, such as luminous intensity, luminance, illuminance, radiant power, radiance, irradiance, etc., regardless of the energy of the electrons.

Results. When applying the method for determining the number of accelerated electrons at low currents of the electronic storage ring, a total standard deviation of the number of accelerated electrons is less than 0.01% for an exposure range of the CCD matrix from 10−2 to 3 · 103 s in a wide dynamic range of 1−1010 electrons per orbit.

Conclusions. The use of a CCD-based radiometer-comparator calibrated by responsivity on a synchrotron radiation source is particularly relevant in monitoring luminance contrast thresholds and spatial distribution of object and background brightness, as well as determining metrological characteristics of optoelectronic measuring instruments, including CCD cameras, radiometers, spectroradiometers and photometers.

About the Authors

A. S. Sigov
MIREA – Russian Technological University
Russian Federation

Alexander S. Sigov, Academician of the RAS, Dr. Sci. (Phys.-Math.), Professor, President

78, Vernadskogo pr., Moscow, 119454 

ResearcherID L-4103-2017

Scopus Author ID 35557510600


Competing Interests:

The authors declare no conflicts of interest.



E. R. Lazarenko
Federal Agency for Technical Regulation and Metrology (Rosstandart)
Russian Federation

Evgenij R. Lazarenko, Deputy Head of the Federal Agency for Technical Regulation and Metrology 

10/2, Presnenskaya nab., Moscow, 125039


Competing Interests:

The authors declare no conflicts of interest.



N. B. Golovanova
MIREA – Russian Technological University
Russian Federation

Natalia B. Golovanova, Dr. Sci. (Econ.), Deputy First Vice-Rrector

78, Vernadskogo pr., Moscow, 119454

Scopus Author ID 57191447039


Competing Interests:

The authors declare no conflicts of interest.



O. A. Minaeva
MIREA – Russian Technological University
Russian Federation

Olga A. Minaeva, Dr. Sci. (Eng.), Head of the Department of Metrology and Standardization, Institute of Advanced Technologies and Industrial Programming

78, Vernadskogo pr., Moscow, 119454

Scopus Author ID 6603019847


Competing Interests:

The authors declare no conflicts of interest.



S. I. Anevsky
MIREA – Russian Technological University
Russian Federation

Sergei I. Anevsky, Dr. Sci. (Eng.), Professor, Department of Metrology and Standardization, Institute of Advanced Technologies and Industrial Programming

78, Vernadskogo pr., Moscow, 119454


Competing Interests:

The authors declare no conflicts of interest.



R. V. Minaev
Elektrosteklo
Russian Federation

Roman V. Minaev, Cand. Sci. (Eng.), Head of the Research Department

5, 26 Bakinskikh Komissarov ul., Moscow, 119571

Scopus Author ID 22235214600


Competing Interests:

The authors declare no conflicts of interest.



P. Yu. Pushkin
MIREA – Russian Technological University
Russian Federation

Pavel Yu. Pushkin, Cand. Sci. (Eng.), Director of the Institute of Advanced Technologies and Industrial Programming

78, Vernadskogo pr., Moscow, 119454


Competing Interests:

The authors declare no conflicts of interest.



References

1. El’kin G.I., Salamatov V.Yu., Krutikov V.N., NovikovN.Yu. The state and main directions of work in the field of ensuring the uniformity of measurements in the Russian Federation. Zakonodatel’naya i prikladnaya metrologiya = Legislative and Applied Metrology. 2010;3:5–10 (in Russ.). Available from URL: https://metrob.ru/html/Stati/metrolob/napravlenia.html

2. Anevskii S.I., Minaeva O.A., Krutikov V.N., Minaev R.V., et al. Metrological Support of Nanotechnologies and Nanoindustry Products. Moscow: Logos; 2011. 592 p. (in Russ.).

3. Richter M., Ulm G. Metrology with Synchrotron Radiation. In: Jaeschke E., Khan S., Schneider J., Hastings J. (Eds.). Synchrotron Light Sources and Free-Electron Lasers. Springer; 2020. P. 1–35. https://doi.org/10.1007/978-3-319-04507-8_63-1

4. Shevelko A.P. Spectral instruments for x-ray and VUV plasma diagnostics. J. Phys.: Conf. Ser. 2018;1115(2):022042. http://doi.org/10.1088/1742-6596/1115/2/022042

5. Torretti F., Liu F., Bayraktar M., Scheers J., Bouza Z., Ubachs W., Hoekstra R., Versolato O. Spectral characterization of an industrial EUV light source for nanolithography. J. Phys. D: Appl. Phys.2019;53(5):055204. http://doi.org/10.1088/1361-6463/ab56d4

6. Berni L.Â., Vilela W.A., Beloto A.F., de Sena F.O. System for measuring the angular response of radiometers. In: Proc. 8th Iberoamerican Optics Meeting and 11th Latin American Meeting on Optics, Lasers, and Applications. 2013. V. 8785. https://doi.org/10.1117/12.2019888

7. Fryc I. Spectral correction of detector used in illuminance measurements. In: Proc. 11th Slovak-Czech-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics (SPIE 3820). 1999. V. 3820. P. 343–348. https://doi.org/10.1117/12.353083

8. Han L. The principle and characteristics of photoelectric sensors. Science and Technology Innovation and Application. 2020;10:77–78.

9. Lutz W. The CCPR K2.c key comparison of spectral responsivity from 200 nm to 400 nm. Metrologia. 2014;51(6):S336. http://doi.org/10.1088/0026-1394/51/6/S336

10. Anevskii S.I., Zolotarevskii Y.M., Ivanov V.S., et al. Spectroradiometry of ultraviolet radiation. Meas. Tech. 2016;28(11):1216–1222. http://doi.org/10.1007/s11018-016-0873-9 [Original Russian Text: Anevskii S.I., Zolotarevskii Yu.M., Ivanov V.S., Krutikov V.N., Minaeva O.A., Minaev R.V. Spectroradiometry of ultraviolet radiation. Izmeritel’’naya Tekhnika. 2015;11:26–30 (in Russ.).]

11. König S., Gutschwager B., Taubert R.D., Hollandt J. Metrological Сharacterization and Сalibration of Thermographic Cameras for Quantitative temperature measurement. Sens. Sens. Syst. 2020;9(2):425–442. https://doi.org/10.5194/jsss-9-425-2020

12. Gottwald A., Krumrey M., Scholze F., et al. Metrology with synchrotron radiation at PTB. Eur. Phys. J. Plus. 2022;137(11):1238. https://doi.org/10.1140/epjp/s13360-022-03417-9

13. Woods S., Neira J., Proctor J., Rice J., Tomlin N., White M., Stephens M., Lehman J. Generalized Electrical Substitution Methods and Detectors for Absolute Optical Power Measurements. Metrologia. 2022;59(4):044002. https://doi.org/10.1088/1681-7575/ac72dc

14. Anevsky S., Ivanov V., Kuznetsov V., Minaeva O., et al. Primary UV-radiation detector standards. Metrologia. 2003;40(1):S25. http://doi.org/10.1088/0026-1394/40/1/307

15. Sigov A.S., Minaeva O.A., Anevsky S.I., Lebedev A.M., Minaev R.V. Metrological studies of the characteristics of multilayer surface coatings using synchrotron radiation. Russ. Technol. J. 2021;9(1):38–47 (in Russ.). https://doi.org/10.32362/2500-316X-2021-9-1-38-47

16. Sigov A.S., Golovanova N.B., Minaeva O.A., Anevsky S.I., Shamin R.V., Ostanina O.I. Solution of topical specroradiometric problems using synchrotron radiation. Russ. Technol. J. 2022;10(3):34–44 (in Russ.). https://doi.org/10.32362/2500-316X-2022-10-3-34-44

17. Schwinger J. On the Classical Radiarion of Accelerated Electrons. Phys. Rev. 1949;75(12):1912. https://doi.org/10.1103/PhysRev.75.1912

18. Wiedemann H. Particle Accelerator Physics. Springer Science & Business Media; 2007. P. 815–894.

19. Anevskii S.I., Zolotarevskii Y.M., Krutikov V.N., et al. The Use of a Standard Source of Synchrotron Radiation for Calibration of the Sensitivity of a Telescope with CCD Array and High Angular Resolution. Meas. Tech. 2015;58(5):520–525. https://doi.org/10.1007/s11018-015-0747-6 [Original Russian Text: Anevskii S.I., Zolotarevskii Yu.M., Krutikov V.N., Lebedev A.M., Minaev R.V., Senin D.S., Stankevich V.G. The Use of a Standard Source of Synchrotron Radiation for Calibration of the Sensitivity of a Telescope with CCD Array and High Angular Resolution Izmeritel’naya Tekhnika. 2015;5:33–36 (in Russ.).]


Supplementary files

1. Distribution of the CCD-matrix pixel signals
Subject
Type Исследовательские инструменты
View (22KB)    
Indexing metadata ▾
  • The study aimed to develop a high-precision method for determining the storage ring accelerated electron number with synchrotron radiation of a single electron to establish spectroradiometry and photometry units.
  • The use of a CCD-based radiometer-comparator calibrated by responsivity on a synchrotron radiation source is particularly relevant in monitoring luminance contrast thresholds and spatial distribution of object and background brightness, as well as determining metrological characteristics of optoelectronic measuring instruments, including CCD cameras, radiometers, spectroradiometers and photometers.

Review

For citations:


Sigov A.S., Lazarenko E.R., Golovanova N.B., Minaeva O.A., Anevsky S.I., Minaev R.V., Pushkin P.Yu. Synchrotron radiation of a single electron application for optical spectroradiometry. Russian Technological Journal. 2023;11(5):71-80. https://doi.org/10.32362/2500-316X-2023-11-5-71-80

Views: 443


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)