Nonlinear magnetoelectric effect in a ring composite heterostructure
https://doi.org/10.32362/2500-316X-2023-11-5-63-70
Abstract
Objectives. The relevance of the study of magnetoelectric (ME) effect in ring ferromagnetic–piezoelectric heterostructures is due to the possibility of creating various ME devices having improved characteristics. A detailed investigation of the nonlinear ME effect in a ring composite heterostructure based on lead zirconate titanate (PZT) piezoceramics and Metglas® amorphous ferromagnetic (FM) alloy under circular magnetization is presented.
Methods. The ME effect was measured by the low-frequency magnetic field modulation method. Excitation alternating- and constant magnetic bias fields were created using toroidal coils wound on a ring heterostructure for circular magnetization of the FM layer.
Results. When excited with circular magnetic fields in a non-resonant mode, the ME ring heterostructure generates a nonlinear ME voltage of higher harmonics. The field and amplitude dependencies of the first three ME voltage harmonics were investigated. ME coefficients were obtained for the linear ME effect α(1) = 5.2 mV/(Oe·cm), the nonlinear ME effect α(2) = 6 mV/(Oe2·cm), and α(3) = 0.15 mV/(Oe3·cm) at an excitation magnetic field frequency f = 1 kHz. The maximum amplitudes of the 1st and 3rd harmonics were observed at a constant bias magnetic field H ~ 7 Oe, which is almost two times smaller than in planar PZT–Metglas® heterostructures.
Conclusions. A nonlinear ME effect was observed and investigated in a ring heterostructure based on PZT piezoceramics and Metglas® amorphous FM alloy. Due to the absence of demagnetization during circular magnetization of the closed FM layer, nonlinear ME effects are detected at significantly lower amplitudes of the exciting alternating and constant bias magnetic fields as compared to planar heterostructures. The investigated ring heterostructures are of potential use in the creation of frequency multipliers.
Keywords
About the Authors
V. I. MusatovRussian Federation
Vladimir I. Musatov, Postgraduate Student, Department of Nanoelectronics, Institute for Advanced Technologies
and Industrial Programming
78, Vernadskogo pr., Moscow, 119454
Scopus Author ID 57416814900
Competing Interests:
The authors declare no conflicts of interest.
F. A. Fedulov
Russian Federation
Fedor A. Fedulov, Cand. Sci. (Eng.), Researcher, Scientific and Educational Center “Magnetoelectric materials and devices”
78, Vernadskogo pr., Moscow, 119454
Scopus Author ID 57194284263
Competing Interests:
The authors declare no conflicts of interest.
D. V. Savelev
Russian Federation
Dmitrii V. Savelev, Research Engineer, Scientific and Educational Center “Magnetoelectric materials and devices”
78, Vernadskogo pr., Moscow, 119454
Scopus Author ID 57196479660
ResearcherID D-8952-2019
Competing Interests:
The authors declare no conflicts of interest.
E. V. Bolotina
Russian Federation
Ekaterina V. Bolotina, Student, Department of Nanoelectronics, Institute for Advanced Technologies and Industrial Programming
78, Vernadskogo pr., Moscow, 119454
Competing Interests:
The authors declare no conflicts of interest.
L. Y. Fetisov
Russian Federation
Leonid Y. Fetisov, Dr. Sci., Professor, Department of Nanoelectronics, Institute for Advanced Technologies and Industrial Programming
78, Vernadskogo pr., Moscow, 119454
Scopus Author ID 26431336600
ResearcherID D-1163-2013
Competing Interests:
The authors declare no conflicts of interest.
References
1. Kopyl S., Surmenev R., Surmeneva M., Fetisov Y., Kholkin A. Magnetoelectric effect: principles and applications in biology and medicine – a review. Materials Today Bio. 2021;12:100149. https://doi.org/10.1016/j.mtbio.2021.100149
2. Azam T., Bukhari S.H., Liaqat U., Miran W. Emerging Methods in Biosensing of Immunoglobin G – A Review. Sensors. 2023;23(2):676. https://doi.org/10.3390/s23020676
3. Herrera D.L., Kruk R., Leistner K., Sort J. Magnetoelectric materials, phenomena, and devices. APL Materials. 2021;9(5):050401. https://doi.org/10.1063/5.0053631
4. Fetisov Y.K., Chashin D.V. Magnetoelectric coil-free voltage transformer based on monolithic ferrite-piezoelectric heterostructure. Sensors and Actuators A: Physical. 2022;344:113737. https://doi.org/10.1016/j.sna.2022.113737
5. Tu C., Chu Z.Q., Spetzler B., Hayes P., et al. Mechanical-resonance-enhanced thin-film magnetoelectric heterostructures for magnetometers, mechanical antennas, tunable RF inductors, and filters. Materials. 2019;12(14):2259. https://doi.org/10.3390/ma12142259
6. Xu L., Yan Y., Qiao L., Wang J., Pan D., Yang S., Volinsky A.A. Layer thickness and sequence effects on resonant magnetoelectric coupling in Ni/Pb(Zr,Ti)O3 cylindrical composites. Materials Lett. 2016;185:13–16. https://doi.org/10.1016/j.matlet.2016.08.042
7. Yakubov V., Xu L., Volinsky A.A., Qiao L., Pan D. Edge geometry effects on resonance response of electroplated cylindrical Ni/PZT/Ni magnetoelectric composites. AIP Advances. 2017;7(8):085305. https://doi.org/10.1063/1.4998947
8. Giang D.T.H., Tam H.A., Khanh V.T.N., Vinh N.T., Tuan P.A., Van Tuan N.V., et al. Magnetoelectric vortex magnetic field sensors based on the metglas/PZT laminates. Sensors. 2020;20(10):2810. https://doi.org/10.3390/s20102810
9. Zhang S., Leung C.M., Kuang W., Or S.W., Ho S.L. Concurrent operational modes and enhanced current sensitivity in heterostructure of magnetoelectric ring and piezoelectric transformer. J. Appl. Phys. 2013;113(17):17C733. https://doi.org/10.1063/1.4801390
10. Fetisov L.Y., Saveliev D.V., Chashin D.V., Gladyshev I.V., Fetisov Y.K. Circular Magnetoelectric Heterostructure Based Inductor Tuned with Magnetic and Electric Fields. J. Commun. Technol. Electron. 2021;66(12):1402–1412. https://doi.org/10.1134/S1064226922020036
11. Ge B., Zhang J., Zhang Q., Filippov D.A., Wu J., Tao J., et al. Ultra-low anisotropy magnetoelectric sensor in Ferrite/piezoelectric toroidal composites. J. Magn. Magn. Mater. 2022;564(Part 2):170115. https://doi.org/10.1016/j.jmmm.2022.170115
12. Burdin D.A., Chashin D.V., Ekonomov N.A., FetisovY.K., Stashkevich A.A. High-sensitivity dc field magnetometer using nonlinear resonance magnetoelectric effect. J. Magn. Magn. Mater. 2016;405(52):244–248. https://doi.org/10.1016/j.jmmm.2015.12.079
13. Wu G., Zhang R. Giant circumferential magnetoelectric effect in Pb (Zr, Ti)O3/Mn-Zn-ferrite cylindrical composite. Sensors and Actuators A: Physical. 2021;330(14):112845. https://doi.org/10.1016/j.sna.2021.112845
14. Fetisov L.Y., Baraban I.A., Fetisov Y.K., Burdin D.A., Vopson M.M. Nonlinear magnetoelectric effects in flexible composite ferromagnetic–Piezopolymer structures. J. Magn. Magn. Mater. 2017;441:628–634. https://doi.org/10.1016/j.jmmm.2017.06.013
15. Burdin D., Chashin D., Ekonomov N., Gordeev S., Fetisov Y. Nonlinear magnetoelectric effect in a layered ferromagnetic-piezoelectric heterostructure excited by transverse magnetic field. Appl. Phys. Lett. 2020;116(7):072901. https://doi.org/10.1063/1.5136088
16. Burdin D., Chashin D., Ekonomov N., Fetisov L., Fetisov Y., Shamonin M. DC magnetic field sensing based on the nonlinear magnetoelectric effect in magnetic heterostructures. J. Phys. D: Appl. Phys. 2016;49(37):375002. https://doi.org/10.1088/0022-3727/49/37/375002
17. Fetisov L.Y., Burdin D.A., Ekonomov N.A., Chashin D.V., Zhang J., Srinivasan G., et al. Nonlinear magnetoelectric effects at high magnetic field amplitudes in composite multiferroics. J. Phys. D: Appl. Phys. 2018;51(15):154003. http://doi.org/10.1088/1361-6463/aab384
18. Joseph R.I., Schlömann E. Demagnetizing field in nonellipsoidal bodies. J. Appl. Phys. 1965;36(5): 1579–1593. https://doi.org/10.1063/1.1703091
19. Fang F., Zhao C.P., Yang W. Thickness effects on magnetoelectric coupling for Metglas/PZT/Metglas laminates. Science China: Physics, Mechanics and Astronomy. 2011;54(4):581–585. https://doi.org/10.1007/s11433-011-4268-2
20. Li M., Wang Y., Hasanyan D., Li J., Viehland D. Giant Converse magnetoelectric effect in multi-push-pull mode Metglas/Pb(Zr,Ti)O3/metglas laminates. Appl. Phys. Lett. 2012;100(13):132904. https://doi.org/10.1063/1.3698114
Supplementary files
|
1. Schematic representation of a PZT-Metglas® ring heterostructure with toroidal coils | |
Subject | ||
Type | Исследовательские инструменты | |
View
(126KB)
|
Indexing metadata ▾ |
- The nonlinear magnetoelectric effect in a ring composite heterostructure based on lead zirconate titanate piezoceramics and Metglas® amorphous ferromagnetic alloy under circular magnetization was observed and investigated.
- Due to the absence of demagnetization during circular magnetization of the closed ferromagnetic layer, nonlinear magnetoelectric effects are detected at significantly lower amplitudes of the exciting alternating and constant bias magnetic fields as compared to planar heterostructures.
- The investigated ring heterostructures are of potential use in the creation of frequency multipliers.
Review
For citations:
Musatov V.I., Fedulov F.A., Savelev D.V., Bolotina E.V., Fetisov L.Y. Nonlinear magnetoelectric effect in a ring composite heterostructure. Russian Technological Journal. 2023;11(5):63-70. https://doi.org/10.32362/2500-316X-2023-11-5-63-70