Models of waveguides combining gradient and nonlinear optical layers
https://doi.org/10.32362/2500-316X-2023-11-4-84-93
Abstract
Objectives. Theoretical studies of the waveguide properties of interfaces between nonlinear optical and graded-index media are important for application in optoelectronics. Waveguides combining layers with different optical properties seem to be the most promising, since they can be matched to optimal characteristics using a wide range of control parameters. The paper aims to develop a theory of composite optically nonlinear gradedindex waveguides with an arbitrary profile, within which it is possible to obtain exact analytical expressions for surface waves and waveguide modes in an explicit form. The main feature of the theory proposed in this paper is its applicability for describing surface waves and waveguide modes, in which the field is concentrated inside the gradient layer and does not exceed its boundary, avoiding contact with the nonlinear layer.
Methods. Analytical methods of the theory of optical waveguides and nonlinear optics are used.
Results. A theoretical description of the waveguide properties of the interface between two media having significantly different optical characteristics is carried out. The formulated model of a plane waveguide is applicable to media having an arbitrary spatial permittivity profile. An analytical expression describing a surface wave propagating along the interface between a medium having stepwise nonlinearity and a gradient layer with an arbitrary permittivity profile is obtained. Additionally, analytical expressions for surface waves propagating along the interface between a medium with Kerr nonlinearity (both self-focusing and defocusing), as well as graded-index media characterized by exponential and linear permittivity profiles, are obtained.
Conclusions. The proposed theory supports a visual description in an explicit analytical form of a narrowly localized light beam within such waveguides. It is shown that by combining different semiconductor crystals in a composite waveguide, it is possible to obtain a nonlinear optical layer on one side of the waveguide interface and a layer with a graded-index dielectric permittivity profile on the other.
About the Author
S. E. SavotchenkoRussian Federation
Sergey E. Savotchenko, Dr. Sci. (Phys.-Math.), Associate Professor, Professor, High Mathematics Department
46, Kostyukova ul., Belgorod, 308012
Scopus Author ID 6603577988
Competing Interests:
None
References
1. Adams M.J. An Introduction to Optical Waveguides. Chichester: Wiley; 1981. 401 p.
2. Chen C.-L. Foundations for Guided-Wave Optics. New York: John Wiley & Sons Inc.; 2005. 462 p. https://doi.org/10.1002/0470042222
3. Dragoman D., Dragoman M. Advanced Optoelectronic devices. Berlin: Springer; 1999. 424 р.
4. Bednarik M., Cervenka M. Electromagnetic waves in graded-index planar waveguides. J. Opt. Soc. Am. B. 2020;37(12):3631–3643. https://doi.org/10.1364/JOSAB.408679
5. Čada M., Qasymeh M., Pištora J. Optical Wave Propagation in Kerr Media. In: Wave Propagation. Theories and Applications. London: IntechOpen; 2013. P. 175–192. http://doi.org/10.5772/51293
6. Shvartsburg A.B., Maradudin A. Waves in Gradient Metamaterials. Singapore: World Scientific; 2013. 339 p. https://doi.org/10.1142/8649
7. Al-Bader S.J., Jamid H.A. Graded-index optical waveguides with nonlinear cladding. J. Opt. Soc. Am. A. 1988;5(3):374–379. https://doi.org/10.1364/JOSAA.5.000374
8. Taya S.A., Kullab H.M., Qadoura I.M. Dispersion properties of slab waveguides with double negative material guiding layer and nonlinear substrate. J. Opt. Soc. Am. B. 2013;30(7):2008–2013. https://doi.org/10.1364/JOSAB.30.002008
9. Almawgani A.H.M., Taya S.A., Hussein A.J., Colak I. Dispersion properties of a slab waveguide with a gradedindex core layer and a nonlinear cladding using the WKB approximation method. J. Opt. Soc. Am. B. 2022;39(6): 1606–1613. https://doi.org/10.1364/JOSAB.458569
10. Hussein A.J., Nassar Z.M., Taya S.A. Dispersion properties of slab waveguides with a linear gradedindex film and a nonlinear substrate. Microsyst. Technol. 2021;27(7):2589–2594. https://doi.org/10.1007/s00542-020-05016-z
11. Taya S.A., Hussein A.J., Colak I. An exact solution of a slab waveguide dispersion relation with a linear gradedindex guiding layer (TM case). Microsyst Technol. 2022;28(22):1213–1219. https://doi.org/10.1007/s00542-022-05281-0
12. Taya S.A., Hussein A.J., Ramahi O.M., Colak I., Chaouche Y.B. Dispersion curves of a slab waveguide with a nonlinear covering medium and an exponential graded-index thin film (transverse magnetic case). J. Opt. Soc. Am. B. 2021;38(11):3237–3243. https://doi.org/10.1364/JOSAB.439034
13. Hussein A.J., Taya S.A., Vigneswaran D., Udiayakumar R., Upadhyay A., Anwar T., Amiri I.S. Universal dispersion curves of a planar waveguide with an exponential gradedindex guiding layer and a nonlinear cladding. Results in Physics. 2021;20:103734. https://doi.org/10.1016/j.rinp.2020.103734
14. Savotchenko S.E. The surface waves propagating along the contact between the layer with the constant gradient of refractive index and photorefractive crystal. J. Opt. 2022;24(4):045501. https://doi.org/10.1088/2040-8986/ac51e9
15. Savotchenko S.E. The composite planar waveguide structure consisting of the linearly graded-index layer and the nonlinear layer formed with an increasing the electric field. Optik. 2022;252:168542. https://doi.org/10.1016/j.ijleo.2021.168542
16. Savotchenko S.E. Light localization in a linearly graded-index substrate covered by intensity dependent nonlinear self-focusing cladding. J. Opt. 2022;24(6): 065503. https://doi.org/10.1088/2040-8986/ac6bab
17. Savotchenko S.E. Discrete spectrum of waveguide modes of a linearly graded-index film introduced into a medium with a stepwise nonlinearity. Optik. 2023;281(6):170835. https://doi.org/10.1016/j.ijleo.2023.170835
18. Savotchenko S.E. Guided waves in a graded-index substrate covered by an intensity-dependent defocusing nonlinear medium. Appl. Phys. B: Lasers and Optics. 2022;128(8):153. https://doi.org/10.1007/s00340-022-07872-1
19. Savotchenko S.E. Nonlinear surface waves propagating along the contact between the graded-index layer and the medium with near surface layer where Kerr nonlinearity disappears with increasing light intensity. Optik. 2023;272:170373. https://doi.org/10.1016/j.ijleo.2022.170373
20. Savotchenko S.E. Surface waves propagating along the interface between a parabolic graded-index medium and a self-focusing nonlinear medium: exact analytical solution. J. Opt. 2022;24(10):105501. https://doi.org/10.1088/2040-8986/ac8e80
21. Savotchenko S.E. Surface waves propagating along the interface between parabolic graded-index medium and photorefractive crystal with diffusion nonlinearity. Phys. B: Condensed Matter. 2023;648(2):414434. https://doi.org/10.1016/j.physb.2022.414434
22. Savotchenko S.E. Surface waves propagating along the interface separating an exponential graded-index medium and the medium with a step change in the dielectric constant. Optik. 2022;271(12):170092. https://doi.org/10.1016/j.ijleo.2022.170092
23. Savotchenko S.E. Waveguide properties of interface separating a photorefractive crystal with diffusion nonlinearity and an exponential graded-index medium. Phys. Lett. A. 2022;455(12):128516. https://doi.org/10.1016/j.physleta.2022.128516
24. Savotchenko S.E. New types of transverse electric nonlinear waves propagating along a linearly graded-index layer in a medium with Kerr nonlinearity. Opt. Quant. Electron. 2023;55(1):74. https://doi.org/10.1007/s11082-022-04323-1
25. Savotchenko S.E. Temperature controlled waveguide properties of the linearly graded-index film in semiconductor crystal with the photorefractive nonlinearity. Appl. Phys. B: Lasers and Optics. 2023;129(1):7. https://doi.org/10.1007/s00340-022-07950-4
26. Khadzhi P.I., Fedorov L.V., Torstveit S. Nonlinear surface waves for the simplest model of nonlinear medium. Phys. Tech. Lett. 1991;61:110–113.
27. Kaplan А.E. Multistable self-trapping of light and multistable soliton pulse propagation. IEEE J. Quant. Electron. 1985;21(9):1538–1543. https://doi.org/10.1109/JQE.1985.1072828
28. Kartashov Y.V., Malomed B.A., Torner L. Solitons in nonlinear lattices. Rev. Mod. Phys. 2011;83(1):247–305. http://doi.org/10.1103/RevModPhys.83.247
29. Laudyn U.A., Rutkowska K.A., Rutkowski R.T., Karpierz M.A., Woliński T.R., Wójcik J. Nonlinear effects in photonic crystal fibers filled with nematic liquid crystals. Cent. Eur. J. Phys. 2008;6(3):612–618. https://doi.org/10.2478/s11534-008-0096-z
30. Polyakov V.V., Polyakova K.P., Seredkin V.A., Patrin G.S. The enhanced magneto-optical Kerr effect in Co/TiO2 multilayer films. Tech. Phys. Lett. 2012;38(10):921–923. https://doi.org/10.1134/S1063785012100227
31. Jarque E.C., Malyshev V.A. Nonlinear reflection from a dense saturable absorber: from stability to chaos. Opt. Commun. 1997;14291(3):66–70. https://doi.org/10.1016/S0030-4018(97)00275-7
32. Schuzgen A., Peyghambarian N., Hughes S. Doppler Shifted Self Reflection from a Semiconductor. Phys. Stat. Sol. (B). 1999;206(1):125–130. https://doi.org/10.1002/(SICI)1521-3951(199803)206:1<125::AID-PSSB125>3.0.CO;2-8
33. Lyakhomskaya K.D., Khadzhi P.I. Self-reflection effect in naïve model of nonlinear media. Tech. Phys. 2000;45(11):1457–1461. https://doi.org/10.1134/1.1325030 [Original Russian Text: Lyakhomskaya K.D., Khadzhi P.I. Self-reflection effect in naïve model of nonlinear media. Zhurnal Tekhnicheskoi Fiziki. 2000;70(11):86–90 (in Russ.).]
34. Christian J.M., McDonald G.S., Chamorro-Posada P. Bistable Helmholtz bright solitons in saturable materials. J. Opt. Soc. Am. B. 2009;26(12):2323–2330. https://doi.org/10.1364/JOSAB.26.002323
35. Korovai O.V. Nonlinear s-polarized quasi-surface waves in the symmetric structure with a metamaterial core. Phys. Solid State. 2015;57(7):1456–1462. https://doi.org/10.1134/S1063783415070197
36. Enns R.H., Rangnekar S.S., Kaplan A.E. Bistablesoliton pulse propagation: Stability aspect. Phys. Rev. A. 1987;36(3):1270–1279. https://doi.org/10.1103/PhysRevA.36.1270
37. Khadzhi P.I., Rusanov A.M., Gaivan S.L. Cavity-free optical bistability of a thin semiconductor film in the exciton region of the spectrum. 1999;29(6):539–541. https://doi.org/10.1070/QE1999v029n06ABEH001526
38. Khadzhi P.I., Gaivan S.L. Nonlinear interaction of an ultrashort light pulse with a thin semiconductor film under conditions of two-photon excitation of biexcitons. Quantum Electron. 1995;25(9):897–900. https://doi.org/10.1070/QE1995v025n09ABEH000497
39. Corovai A.V., Khadzhi P.I. Optical properties of a semiconductor upon two-photon excitation of biexcitons by a powerful pump pulse and one-photon probing in the M band. Quantum Electron. 2001;31(10):937–939. https://doi.org/10.1070/QE2001v031n10ABEH002080
40. Roussignol P., Ricard D., Flytzanis C. Nonlinear optical properties of commercial semiconductor-doped glasses. Appl. Phys. A. 1987;44:285–292. https://doi.org/10.1007/BF00624594
41. Vanhaudenarde A., Trespidi M., Frey R. Refractive-index changes during photodarkening in semiconductor-doped glasses. J. Opt. Soc. Am. B. 1994;11(8):1474–1479. https://doi.org/10.1364/JOSAB.11.001474
42. Catunda T., Cury L.A. Transverse self-phase modulation in ruby and GdAlO3:Cr+3 crystals. J. Opt. Soc. Am. B. 1990;7(8): 1445–1455. https://doi.org/10.1364/JOSAB.7.001445
43. Wang S.Q., Wang X., Birge R., Downie J.D., Timucin D., Gary C. Propagation of a Gaussian beam in a bacteriorhodopsin film. J. Opt. Soc. Am. B. 1998;15(5): 1602–1609. https://doi.org/10.1364/JOSAB.15.001602
44. Mendoza-Alvarez J.G., Nunes F.D., Patel N.B. Refractive index dependence on free carriers for GaAs. J. Appl. Phys. 1980;51(8):4365-4367. https://doi.org/10.1063/1.328298
45. Ravindran S., Datta A., Alameh K., Lee Y.T. GaAs based long-wavelength microring resonator optical switches utilising bias assisted carrier-injection induced refractive index change. Opt. Express. 2012;20(14):15610–15627. https://doi.org/10.1364/OE.20.015610
46. Zucker J.E., Chang T.Y., Wegener M., Sauer N.J., Jones K.L., Chemla D.S. Large refractive index changes in tunable-electron-density InGaAs/InAlAs quantum wells. IEEE Photon. Technol. Lett. 1990;2(1):29–31. https://doi.org/10.1109/68.47032
47. Ishida K., Nakamura H., Matsumura H. InGaAsP/InP optical switches using carrier induced refractive index change. Appl. Phys. Lett. 1987;50(3):141–142. https://doi.org/10.1063/1.97695
48. Вигдорович Е.Н. Радиационная стойкость эпитаксиальных структур на основе GaAs. Russ. Technol. J. 2019;7(3):41–49. https://doi.org/10.32362/2500-316X-2019-7-3-41-49 [Vigdorovich E.N. Radiation resistance of epitaxial structures based on GaAs. Russ. Technol. J. 2019;7(3):41–49 (in Russ.). https://doi.org/10.32362/2500-316X-2019-7-3-41-49 ]
49. Karasiński P., Rogoziński R. Influence of refractive profile shape on the distribution of modal attenuation in planar structures with absorption cover. Opt. Commun. 2007;269(1):76–88. https://doi.org/10.1016/j.optcom.2006.07.067
50. Shutyi A., Sementsov D., Kazakevich A.V., Sannikov D. Waveguide regimes of a graded-index planar waveguide with cladding. Tech. Phys. 1999;44(1):1329–1333. https://doi.org/10.1134/1.1259518
- A theoretical description of the waveguide properties of the interface between two media having significantly different optical characteristics is carried out.
- The formulated model of a plane waveguide is applicable to media having an arbitrary spatial permittivity profile.
- An analytical expression describing a surface wave propagating along the interface between a medium having stepwise nonlinearity and a gradient layer with an arbitrary permittivity profile is obtained.
Review
For citations:
Savotchenko S.E. Models of waveguides combining gradient and nonlinear optical layers. Russian Technological Journal. 2023;11(4):84-93. https://doi.org/10.32362/2500-316X-2023-11-4-84-93