1. Губанов Д.А., Новиков Д.А., Чхартишвили А.Г. Социальные сети: модели информационного влияния, управления и противоборства. М.: Изд-во МЦНМО; 2018. 223 с. ISBN 978-5-4439-1302-5
2. Батура Т.В. Методы анализа компьютерных сетей. Вестник НГУ. Серия: Информационные технологии. 2012;10(4):13-28. URL: https://lib.nsu.ru/xmlui/handle/nsu/250
3. Pasa L., Navarin N., Sperdut A. SOM-based aggregation for graph convolutional neural networks. Neural Comput. & Applic. 2022;34(1):5-24. https://doi.org/10.1007/s00521-020-05484-4
4. Zhukov D.O., Akimov D.A., Red’kin O.K., Los’ V.P. Application of convolutional neural networks for preventing information leakage in open internet resources. Aut. Control Sci. 2017;51(8):888-893. https://doi.org/10.3103/S0146411617080314
5. Zhang Z., Wu S., Jiang D., Chen G. BERT-JAM: Maximizing the utilization of BERT for neural machine translation. Neurocomputing. 2021;460:84-94. https://doi.org/10.1016/j.neucom.2021.07.002
6. Маккинли У. Python и анализ данных: пер. с англ. М.: ДМК Пресс; 2020. 540 с. ISBN 978-5-94074-590-5 [McKinney W. Python for Data Analysis: 2nd ed. US: O’Reilly Media, Inc.; 2017. 541 p. ISBN 978-1-491-95766-0. Available from URL: https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf]
7. Николенко С., Кадурин А., Архангельская Е. Глубокое обучение. Погружение в мир нейронных сетей. СПб.: Питер; 2021. 476 с. ISBN 978-5-4461-1537-2.
8. Кан К. Нейронные сети. Эволюция. ЛитРес; 2018. 380 с.
9. Рашид Т. Создаем нейронную сеть: пер. с англ. СПб.: ООО «Альфа-книга»; 2017. 272 с. ISBN 978-59909445-7-2 [Rashid T. Make Your Own Neural Network. 1st ed. CreateSpace Independent Publishing Platform; 2016. 222 p. ISBN-13 978-1530826605]
10. Галушкин А.И. Нейронные сети: основы теории. М.: Горячая линия-Телеком; 2012. 496 с. ISBN 978-59912-0082-0
11. Савельев А.В. Философия методологии нейромоделирования: смысл и перспективы. Философия науки. 2003;1(16):46-59.
12. Алексеев А.Ю., Кузнецов В.Г., Петрунин Ю.Ю., Савельев А.В., Янковская Е.А. Нейрофилософия как концептуальная основа нейрокомпьютинга. Нейрокомпьютеры: разработка, применение. 2015;5:69-77.
13. Sekara V., Stopczynski A., Lehmann S. Fundamental structures of dynamic social networks. Proc. Natl Acad. Sci. USA. 2016;113(36):9977-9982. https://doi.org/10.1073/pnas.1602803113
14. Ubaldi E., Vezzani A., Karsai M., Perra N., Burioni R. Burstiness and tie activation strategies in time-varying social networks. Sci. Rep. 2017;7:46225. https://doi.org/10.1038/srep46225
15. Palomares I.,Porcel C.,Pizzato L.,Guy I.,Herrera-ViedmaE. Reciprocal recommender systems: analysis of state-of-art literature, challenges and opportunities towards social recommendation. Information Fusion. 2021;69(16): 103-127. https://doi.org/10.1016/j.inffus.2020.12.001
16. Yatim Md.A.F., Wardhana Y., Kamal A., Soroinda A.A.R., Rachim F., Wonggo M.I. A corpus-based lexicon building in Indonesian political context through Indonesian online news media. In: 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS). IEEE. https://doi.org/10.1109/ICACSIS.2016.7872794
17. Kirn S.L., Hinders M.K. Dynamic wavelet fingerprint for differentiation of tweet storm types. Soc. Netw. Anal. Min. 2020;10(1):4. https://doi.org/10.1007/s13278-019-0617-3
18. Karami A., Elkouri A. Political Popularity Analysis in Social Media. In: Taylor N., Christian-Lamb C., Martin M., Nardi B. (Eds.). Information in Contemporary Society. Part of: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2019. V. 11420. P. 456-465. https://doi.org/10.1007/978-3-030-15742-5_44
19. Belcastro L., Cantini R., Marozzo F., Talia D., Trunfi P. Learning political polarization on social media using neural networks. IEEE Access. 2020;8:47177-47187. https://doi.org/10.1109/ACCESS.2020.2978950
20. Vijayaraghavan P., Vosoughi S., Roy D. Twitter demographic classification using deep multi-modal multi-task learning. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. 2017;2(Short Papers):478-483. https://doi.org/10.18653/v1/P17-2076
21. Preoţiuc-Pietro D., Liu Y., Hopkins D., Ungar L. Beyond binary labels: political ideology prediction of Twitter users. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. 2017;1(Long Papers):729-740. https://doi.org/10.18653/v1/P17-1068
22. Hinds J., Joinson A.N. What demographic attributes do our digital footprints reveal? A systematic review. PLoS One. 2018;13(11):e0207112. https://doi.org/10.1371/journal.pone.0207112
23. García D. Leaking privacy and shadow profiles in online social networks. Sci. Adv. 2017;3(8):e1701172. https://doi.org/10.1126/sciadv.1701172
24. Pandya A., Oussalah M., Monachesi P., Kostakos P. On the use of distributed semantics of tweet metadata for user age prediction. Future Generation Computer Systems. 2020;102(5915): 437-452. https://doi.org/10.1016/j.future.2019.08.018
25. Pulipati S., Somula R., Parvathala B.R. Nature inspired link prediction and community detection algorithms for social networks: a survey. Int. J. Syst. Assur. Eng. Manag. 2021. https://doi.org/10.1007/s13198-021-01125-8
26. Li H., Mao X., Wu C., Yang F. Design and analysis of a general data evaluation system based on social networks. EURASIP J. Wireless Com. Network. 2018;1:109. https://doi.org/10.1186/s13638-018-1095-4
27. Xu F., Sun D., Li Z., Li B. Research on online supporting community of extreme organization by AI-SNA based method. In: Proceedings of the 8th IEEE International Conference on Software Engineering and Service Sciences (ICSESS). 2018. V. 2017. P. 546-551. https://doi.org/10.1109/ICSESS.2017.8342974
28. Volkova S., Bachrach Y., Van Durme B. Mining user interests to predict perceived psycho-demographic traits on Twitter. In: 2016 IEEE Second International Conference on Big Data Computing Service and Applications (BigDataService). IEEE. 2016. P. 36-43. https://doi.org/10.1109/BigDataService.2016.28
29. Culotta A., Ravi N.K., Cutler J. Predicting Twitter user demographics using distant supervision from website traffic data. J. Artif. Intell. Res. 2016;55:389-408. https://doi.org/10.1613/jair.4935
30. Barberá P. Less is more? How demographic sample weights can improve public opinion estimates based on Twitter data. Working Paper. Available from URL: http://pablobarbera.com/static/less-is-more.pdf
31. Ardehaly E.M., Culotta A. Learning from noisy label proportions for classifying online social data. Soc. Netw. Anal. Min. 2018;8:2. https://doi.org/10.1007/s13278-017-0478-6
32. Franco-Riquelme J.N., Bello-Garcia A., Ordieres-Meré J. Indicator proposal for measuring regional political support for the electoral process on Twitter: The case of Spain’s 2015 and 2016 general elections. IEEE Access. 2019;7:62545-62560. https://doi.org/10.1109/ACCESS.2019.2917398
33. Jungherr A., Schoen H., Posegga O., Jürgens P. Digital trace data in the study of public opinion: an indicator of attention toward politics rather than political support. Soc. Sci. Comput. Rev. 2016;35(3):336-356. https://doi.org/10.1177/0894439316631043
34. Mwanza S., Suleman H. Measuring network structure metrics as a proxy for socio-political activity in social media. In: IEEE International Conference on Data Mining Workshops (ICDMW). IEEE. 2017. P. 878-883. https://doi.org/10.1109/ICDMW.2017.120
35. Al-Agha I., Abu-Dahrooj O. Multi-level analysis of political sentiments using Twitter data: A case study of the Palestinian-Israeli conflict. Jordanian Journal of Computers and Information Technology. 2019;5(3): 195-215. https://doi.org/10.5455/jjcit.71-1562700251
36. Basil M., Gaikwad S., Salim A.S. Deep learning approach based dominant age group based classification for social network. In: Khalaf M., Al-Jumeily D., Lisitsa A. (Eds.). Applied Computing to Support Industry: Innovation and Technology. ACRIT 2019. Communications in Computer and Information Science. 2020;1174:148-156. https://doi.org/10.1007/978-3-030-38752-5_12
37. Guimaraes R., Renata R., De Gaetano D., Rodriguez D.Z., Bressan G. Age groups classification in social network using deep learning. IEEE Access. 2017;5:10805-10816. https://doi.org/10.1109/ACCESS.2017.2706674
38. Bhat S.F., Lone A.W., Dar T.A. Gender prediction from images using deep learning techniques. In: 2019 International Artificial Intelligence and Data Processing Symposium (IDAP). IEEE. 2019. https://doi.org/10.1109/IDAP.2019.8875934
39. Bulut İ., Erdoğan M., Gönülal B., Baş R., Kılıç Ö. Using short texts and emojis to predict the gender of a texter in Turkish. In: 2019 4th International Conference on Computer Science and Engineering (UBMK). IEEE. 2019. P. 435-438. https://doi.org/10.1109/UBMK.2019.8907198
40. Dileep M.R., Danti A. Multiple hierarchical decision on neural network to predict human age and gender. In: 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS). IEEE. 2016. https://doi.org/10.1109/ICETETS.2016.7603026
41. Gupta R., Kumar S., Yadav P., Shrivastava S. Identification of age, gender, & race SMT (scare, marks, tattoos) from unconstrained facial images using statistical techniques. In: 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE). IEEE. 2018. https://doi.org/10.1109/ICSCEE.2018.8538423
42. Khdr J., Varol C. Age and gender identification by SMS text messages. In: 2018 International Conference on Artificial Intelligence and Data Processing (IDAP). IEEE. 2018. https://doi.org/10.1109/IDAP.2018.8620780
43. Koti P., Pothula S., Dhavachelvan P. Age forecasting analysis - over microblogs. In: 2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM). IEEE. 2017. P. 83-86. https://doi.org/10.1109/ICRTCCM.2017.38
44. López-Santamaría L.-M., Almanza-Ojeda D.-L., Gomez J.C., Ibarra-Manzano M. Age and gender identification in unbalanced social media. In: 2019 International Conference on Electronics, Communications and Computers (CONIELECOMP). IEEE. 2019. https://doi.org/10.1109/CONIELECOMP.2019.8673125
45. Luo F., Cao G., Mulligan K., Li X. Explore spatiotemporal and demographic characteristics of human mobility via Twitter: A case study of Chicago. Applied Geography. 2015;70(3):11-25. https://doi.org/10.1016/j.apgeog.2016.03.001
46. Sánchez-Hevia H.A., Gil-Pita R., Utrilla-Manso M., Rosa-Zurera M. Convolutional-recurrent neural network for age and gender prediction from speech. In: 2019 Signal Processing Symposium (SPSympo). IEEE. 2019. P. 242-245. https://doi.org/10.1109/SPS.2019.8881961
47. Wang Y., Song W., Liu L. Age prediction based on feature selection. In: 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA). IEEE. 2017. P. 359-363. https://doi.org/10.1109/CIAPP.2017.8167239
48. Pandya A., Oussalah M., Monachesi P., Kostakos P., Lovén L. On the use of URLs and hashtags in age prediction of Twitter users. In: 2018 IEEE International Conference on Information Reuse and Integration (IRI). IEEE. 2018. P. 62-69. https://doi.org/10.1109/IRI.2018.00017
49. Zhukov D.O., Zaltcman A.D., Khvatova T.Yu. Forecasting changes in states in social networks and sentiment security using the principles of percolation theory and stochastic dynamics. In: Proceedings of the 2019 IEEE International Conference “Quality Management, Transport and Information Security, Information Technologies” (IT&QM&IS). IEEE. 2019. Article number 8928295. P. 149-153. https://doi.org/10.1109/ITQMIS.2019.8928295
50. Mukhamediev R.I., Yakunin K., Mussabayev R., Buldybayev T., Kuchin Y., Murzakhmetov S., Yelis M. Classification of negative information on socially significant topics in mass media. Symmetry. 2020;12(12):1945. https://doi.org/10.3390/sym12121945
51. Ko H., Jong Y., Sangheon K., Libor M. Human-machine interaction: A case study on fake news detection using a backtracking based on a cognitive system. Cogn. Syst. Res. 2019;55:77-81. https://doi.org/10.1016/j.cogsys.2018.12.018
52. Willaert T., Van Eecke P., Beuls K., Steels L. Building social media observatories for monitoring online opinion dynamics. Soc. Media Soc. 2020;6(2):205630511989877.
53. Tran C., Shin W.-Y., Spitz A. Community detection in partially observable social networks. ACM Transactions on Knowledge Discovery from Data. 2022;16(2):1-24. https://doi.org/10.1145/3461339
54. Chen Z., Li L., Bruna J. Supervised community detection with line graph neural networks. In Proceedings of the 7th International Conference on Learning Representations (ICLR). ACM. 2019. https://doi.org/10.48550/arXiv.1705.08415
55. Hoff T., Peel L., Lambiotte R., Jones N.S. Community detection in networks without observing edges. Sci. Adv. 2020;6(4):eaav1478. https://doi.org/10.1126/sciadv.aav1478
56. Башуев Я.П., Григорьев В.Р. Методы деанонимизации в социальных сетях. Вестник РГГУ. Серия: Документоведение и архивоведение. Информатика. Защита информации и информационная безопасность. 2016;3(5):125-146. URL: https://www.rsuh.ru/upload/main/vestnik/pmorv/Vestnik_daizi3(5)-16.pdf#page=125
57. Wondracek G., Holz T., Kirda E., Kruegel C. A practical attack to de-аnonymize social network users. Technical Report TR-iSecLab-0110-001. 2013. Available from URL: https://anonymous-proxy-servers.net/paper/sonda-tr.pdf
58. Simon B., Gulyás G., Imre S. Analysis of grasshopper, a novel social network de-anonymization algotithm. Periodica Polytechnica: Electrical Engineering and Computer Science. 2014;58(4):161-173. https://doi.org/10.3311/PPee.7878
59. Peng W., Li F., Zou X., Wu J. Atwo-stage deanonymization attack against anonymized social networks. IEEE Trans. Comp. 2014;63(2):290-303. https://doi.org/10.1109/TC.2012.202
60. Khvatova T., Zaltsman A., Zhukov D. Information processes in social networks: Percolation and stochastic dynamics. In: CEUR Workshop. Proceedings 2nd International Scientific Conference “Convergent Cognitive Information Technologies.” 2017;1-2064: 277-288.
61. Zhukov D., Khvatova T., Zaltsman A. Stochastic dynamics of influence expansion in social networks and managing users’transitions from one state to another. In: Proceedings of the 11th European Conference on Information Systems Management (ECISM). 2017. P. 322-329. Available from URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-85039839600&partnerID=MN8TOARS