Preview

Russian Technological Journal

Advanced search

Nanoelectronics and nanotechnology: promising approaches in the educational process

https://doi.org/10.32362/2500-316X-2022-10-4-93-100

Abstract

Objectives. Nanoelectronics is concerned with the development of physical and technological foundations for the creation of integrated circuits comprised of elements whose topological dimensions do not exceed 100 nm. Nanotechnology includes the creation and use of materials, devices and technical systems whose functioning is determined by their nanostructure, i.e., comprising ordered fragments ranging from 1 to 100 nm in size. The present research is aimed at developing a concept for training highly qualified specialists in the field of nanoelectronics and nanotechnologies on the example of the Department of Nanoelectronics of the Institute of Advanced Technologies and Industrial Programming at the MIREA - Russian Technological University.

Methods. Promising approaches for supporting the educational process within the nanoindustry are analyzed and compared.

Results. Three fundamental components of education in the field of nanoindustry can be distinguished: physical (the study and search for new promising physical effects); materials science, related to the study, search, and synthesis of new advanced materials; informatics (including mastering of modern software packages and programming languages for modeling a wide range of nanoindustry elements and materials).

Conclusions. All three fundamental components of education within nanoindustry have been effectively implemented by combining scientific laboratories and centers at the Department of Nanoelectronics. After graduating from the Department of Nanoelectronics, graduates can work for leading scientific institutes and technical organizations in Russia, intern at specialized organizations in neighboring and other countries, teach at leading universities, and start their own knowledge-intensive business.

About the Authors

A. S. Sigov
МИРЭА - Российский технологический университет
Russian Federation

Alexander S. Sigov - Academician of the Russian Academy of Sciences, Dr. Sci. (Phys.-Math.), Professor, President, MIREA - Russian Technological University.

78, Vernadskogo pr., Moscow, 119454.

Scopus Author ID 35557510600, ResearcherID L-4103-2017, RSCI SPIN-code 2869-5663


Competing Interests:

None



I. V. Gladyshev
МИРЭА - Российский технологический университет
Russian Federation

Igor V. Gladyshev - Cand. Sci. (Phys.-Math.), Associate Professor, Department of Nanoelectronics, Institute of Advanced Technologies and Industrial Programming, MIREA - Russian Technological University.

78, Vernadskogo pr., Moscow, 119454.

Scopus Author ID 6701612553, ResearcherID N-1535-2016, RSCI SPIN-code 6735-1887


Competing Interests:

None



A. N. Yurasov
МИРЭА - Российский технологический университет
Russian Federation

Alexey N. Yurasov - Dr. Sci. (Phys.-Math.), Professor, Department of Nanoelectronics, Deputy Director of the Institute of Advanced Technologies and Industrial Programming, MIREA - Russian Technological University.

78, Vernadskogo pr., Moscow, 119454.

Scopus Author ID 6602974416, ResearcherID M-3113-2016, RSCI SPIN-code 4259-8885


Competing Interests:

None



References

1. Taniguchi N. On the basic concept of nano-technology. In: Proc. Int. Conf. Prod. Eng. Tokyo. Part II. Japan Society of Precision Engineering. 1974. P. 18-23.

2. GusevA.I. Nanomaterialy, nanostruktury, nanotekhnologii (Nanomaterials, nanostructures, nanotechnologies). Moscow: Fizmatlit; 2009. 416 p. (in Russ.).

3. BuryakovA.M., et al. Effectsof crystallographicorientation of GaAs substrate and the period of plasmon grid on THz antenna performance. Ann. Phys. 2021;533(8):2100041. https://doi.org/10.1002/andp.202100041

4. Saveliev D.V., Chashin D.V., Fetisov L.Y., Fetisov Y.K. Resonance magnetoelectric effect in a composite ferromagnet-dielectric-piezoelectric Langevin-type resonator. J. Phys. D: Appl. Phys. 2021;54(46):465002. https://doi.org/10.1088/1361-6463/ac1d72

5. Atanova A.V., Zhigalina O.M., Khmelenin D.N., Orlov G.A., Seregin D.S., Sigov A.S., Vorotilov K.A. Microstructure analysis of porous lead zirconate-titanate films. J. Am. Ceram. Soc. 2022;105(1):639-652. https://doi.org/10.1111/jace.18064

6. Vishnevskiy A.S., Vorotyntsev D.A., Seregin D.S., Vorotilov K.A. Effect of surface hydrophobisation on the properties of a microporous phenylene-bridged organosilicate film. J. Non Cryst. Solids. 2022;576:121258. https://doi.org/10.1016/j.jnoncrysol.2021.121258

7. Berzin A.A., Sigov A.S., Morosov A.I. Phase diagram of the O(n) model with defects of “random local anisotropy” type. J. Magn. Magn. Mater. 2018;459:256-259. https://doi.org/10.1016/J.JMMM.2017.10.080

8. Berzin A.A., Sigov A.S., Morozov A.I. Cubic-type anisotropy created by defects of “random local anisotropy” type and phase diagram of the O(n)-model. Phys. Solid State. 2017;59(12): 2448-2452. https://doi.org/10.1134/S1063783417120095 [Original Russian Text: Berzin A.A., Morozov A.I., Sigov A.S. Cubic-type anisotropy created by defects of “random local anisotropy” type and phase diagram of the O(n)-model. Fizika Tverdogo Tela. 2017;59(12):2420-2424 (in Russ.). https://doi.org/10.21883/FTT.2017.12.45243.166 ]

9. Berzin A.A., Sigov A.S., Morosov A.I. The Imry-Ma phase in a nanocrystalline ferromagnet. Phys. the Solid State. 2018;60(9):1733-1736. https://doi.org/10.1134/S1063783418090056 [Original Russian Text: Berzin A.A., Morozov A.I., Sigov A.S. The Imry-Ma phase in a nanocrystalline ferromagnet. Fizika Tverdogo Tela. 2018;60(9):1689-1692 (in Russ.). https://doi.org/10.21883/FTT.2018.09.46385.050 ]

10. Telegin A.V., Barsaume S., Bessonova V.A., Sukhorukov Y.P., Nosov A.P., Kimel' A.V., Gan'shina E.A., Yurasov A.N., Lysina E.A. Magnetooptical response to tunnel magnetoresistance in manganite films with a variant structure. J. Magn. Magn. Mater. 2018;459:317-321. https://doi.org/10.1016/J.JMMM.2017.10.006

11. Ovcharenko S., Gaponov M., Klimov A., Tiercelin N., Pernod P., Mishina E., Sigov A., Preobrazhensky V. Photoinduced spin dynamics in a uniaxial intermetallic heterostructure TbCo2/FeCo. Sci. Rep. 2020;10(1):15785. https://doi.org/10.10328/s41598-020-72740-x

12. Vishnevskiy A.S., Naumov S., Seregin D.S., Wu Y.-H., Chuang W.-T., Rasadujjaman M., Zhang J., Leu J., Vorotilov K.A., Baklanov M.R. Effects of methyl terminal and carbon bridging groups ratio on critical properties of porous organosilicate glass films. Materials. 2020;13(20):4484. https://doi.org/10.3390/ma13204484

13. Saveliev D.V., Belyaeva I.A., Chashin D.V., Fetisov L.Y., Shamonin M. Large Wiedemann effect in a magnetoactive elastomer. J. Magn. Magn. Mater. 2020;511:166969. https://doi.org/10.1016/j.jmmm.2020.166969

14. Burdin D.A., Chashin D.V., Ekonomov N.A., Gordeev S.N., Fetisov Y.K. Nonlinear magnetoelectric effect in a ferromagnetic-piezoelectric structure induced by rotating magnetic field. Smart Mater. Struct. 2019;28(10):107001. https://doi.org/10.1088/1361-665X/ab34e9

15. Fetisov L.Y., Chashin D.V., Plekhanova D.D., Saveliev D.V., Fetisov Y.K. Electrical field control of magnetoelectric effect in composite structures with single-crystal piezoelectrics. J. Magn. Magn. Mater. 2019;470:93-96. https://doi.org/10.1016/j.jmmm.2017.11.010

16. Sharaevskaya A.Y., Beginin E.N., Kalyabin D.V., Fetisov Y.K., Nikitov S.A. Surface spin waves in coupled easy-axis antiferromagnetic films. J. Magn. Magn. Mater. 2019;475: 778-781. https://doi.org/10.1016/j.jmmm.2018.11.130

17. Chashin D.V., Fetisov L.Y. Saveliev D.V., Fetisov Y.K. Magnetoelectric monolithic resonator based on the ferromagnetic-piezoelectric structure excited with a linear current. Sensors Letters. 2019;3(3):2500804. https://doi.org/10.1109/LSENS.2019.2895966

18. Burdin D.A., Ekonomov N.A., Chashin D.V., Fetisov Y.K., Gordeev S.N. Magnetoelectric doubling and mixing of electric and magnetic field frequencies in a layered multiferroic heterostructure. J. Magn. Magn. Mater. 2019;485:36-42. https://doi.org/10.1016/j.jmmm.2019.04.037

19. Fetisov L.Y., Chashin D.V., Saveliev D.V., Afanasiev M.S., Simonov-Emel'yanov I.D., Vopson M.M., Fetisov Y.K. Magnetoelectric direct and converse resonance effects in a flexible ferromagnetic-piezoelectric polymer structure. J. Magn. Magn. Mater. 2019;485:251-256. https://doi.org/10.1016/j.jmmm.2019.04.085

20. Gorbatova A.V., Khusyainov D.I., Yachmenev A.E., Khabibullin R.A., Ponomarev D.S., Buryakov A.M., Mishina E.D. A photoconductive THz detector based on superlattice heterostructure with plasmon amplification. Tech. Phys. Lett. 2020;46(22):1111-1115. http://doi.org/10.1134/S1063785020110218 [Original Russian Text: Gorbatova A.V., Khusyainov D.I., Yachmenev A.E., Khabibullin R.A., Ponomarev D.S., Buryakov A.M., Mishina E.D. A photoconductive THz detector based on superlattice heterostructure with plasmon amplification. Pis'ma v Zhurnal tekhnicheskoi fiziki. 2020;46(22):10-14 (in Russ.). http://doi.org/10.21883/PJTF.2020.22.50300.18442 ]


The paper reveals the concept of training highly qualified specialists in the field of nanoelectronics and nanotechnology drawing on the case of the Department of Nanoelectronics of the Institute of Advanced Technologies and Industrial Programming of RTU MIREA. The paper highlights three fundamental components of education in the field of nanoindustry: physical (the study and search for new promising physical effects); materials science, related to the study, search and synthesis of new promising materials; and informational (involving the development of modern software packages and programming languages for modeling a wide range of elements and materials of the nanoindustry). It is shown that all three fundamental components of education in the field of nanoindustry are effectively implemented through the combination of scientific laboratories and centers at the Department of Nanoelectronics.

Review

For citations:


Sigov A.S., Gladyshev I.V., Yurasov A.N. Nanoelectronics and nanotechnology: promising approaches in the educational process. Russian Technological Journal. 2022;10(4):93-100. https://doi.org/10.32362/2500-316X-2022-10-4-93-100

Views: 482


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)