Preview

Russian Technological Journal

Advanced search

Nonreciprocal propagation of spin waves in a bilayer magnonic waveguide based on yttrium-iron garnet films

https://doi.org/10.32362/2500-316X-2022-10-4-55-64

Abstract

Objectives. Nonreciprocal spin wave effects can manifest themselves in metalized films of ferrite garnets. By studying the dynamics of spin waves in micro- and nano-scale magnetic films, the possibility of using multilayer dielectric films of yttrium iron garnet (YIG) to ensure the manifestation of the nonreciprocity effect is demonstrated. This approach offers advantages compared to the use of a layered YIG/metal structure due to significantly lower spin-wave losses in the two-layer YIG film consisting of layers with different values of magnetization. Such films can be used in logical elements to create controllable Mach-Zehnder interferometers based on magnonic principles. The purpose of this work is to reconcile the concept of nonreciprocal spin-wave propagation of a signal with the simultaneous manifestation of the effects arising from the propagation of spin waves in microwave guides formed by finite-width YIG films.

Methods. We used an experimental microwave spectroscopy method based on a vector network analyzer along with a finite difference method to perform a numerical simulation of the dispersion characteristics of spin waves in two-layer magnonic microwave guides. An analytical model was also used to obtain a dispersion equation based on the magnetostatic approximation.

Results. Based on measurements of the amplitude and phase responses, the possible coexistence of two frequency ranges for the propagation of a spin-wave signal in a two-layer magnon microwave guide based on a YIG film formed by two layers with different values of saturation magnetization was demonstrated. Regimes of nonreciprocal propagation of a spin-wave signal were revealed. A numerical model was using to study the formation mechanisms of spin wave modes in the spectrum of a two-layer structure formed due to the finite dimensions of the microwave guide. An analytical model was used to evaluate the transformation of the mode spectrum. The experimental data are in good agreement with the results of the proposed numerical and analytical models.

Conclusions. The possibility of frequency-selective propagation of spin waves in a magnon microwaveguide consisting of two layers with different saturation magnetization values is demonstrated. Multimode propagation of spin waves can occur inside a two-layer structure in two frequency ranges. At the same time, this process is accompanied by a strong nonreciprocity of spin-wave signal propagation, which manifests itself in a change in the amplitude and phase responses when the direction of the external magnetic field is reversed. The proposed two-layer spin-wave waveguide concept can be used in the manufacture of magnon interconnects and magnon interferometers with the support of multiband regimes of operation.

About the Authors

S. A. Odintsov
Saratov State University
Russian Federation

Sergey A. Odintsov - Postgraduate Student, Junior Researcher, Laboratory Management Magnetic Metamaterials, Saratov State University.

83, Astrakhanskaya ul., Saratov, 410012.

Scopus Author ID 57192873555, ResearcherID P-2795-2017, RSCI SPIN-code 3874-1140


Competing Interests:

None



E. H. Lock
Fryazino Branch, Institute of Radioengineering and Electronics, Russian Academy of Sciences
Russian Federation

Edwin H. Lock - Dr. Sci. (Phys.-Math.), Head of the Laboratory of Microwave Properties of Ferromagnetics, Fryazino Branch, Institute of Radioengineering and Electronics, Russian Academy of Science.

1, Vvedenskogo pl., Moscow oblast, Fryazino, 141120.

Scopus Author ID 6603875313, ResearcherID С-5325-2012, RSCI SPIN-code 1030-4543


Competing Interests:

None



E. N. Beginin
Saratov State University
Russian Federation

Evgeniy N. Beginin - Cand. Sci. (Phys.-Math.), Head of the Department of Nonlinear Physics, Saratov State University.

83, Astrakhanskaya ul., Saratov, 410012.

Scopus Author ID 24722705200, ResearcherID D-5766-2013, RSCI SPIN-code 2335-8660


Competing Interests:

None



A. V. Sadovnikov
Saratov State University
Russian Federation

Alexander V. Sadovnikov - Cand. Sci. (Phys.-Math.), Associate Professor, Department of Open Systems Physics, Saratov State University.

83, Astrakhanskaya ul., Saratov, 410012.

Scopus Author ID 36683238600, ResearcherID F-6183-2012, RSCI SPIN-code 8124-6029


Competing Interests:

None



References

1. Amel'chenko M.D., Grishin S.V., Sharaevskii Y.P. Fast and slow electromagnetic waves in a longitudinally magnetized thin-film ferromagnetic metamaterial. Tech. Phys. Lett. 2019;45(12):1182-1186. https://doi.org/10.1134/S1063785019120022

2. Bajpai S.N. Excitation of magnetostatic surface waves: Effect of finite sample width. J. Appl. Phys. 1985;58(2): 910-913. https://doi.org/10.1063/1.336164

3. Beginin E., Kalyabin D., Popov P., Sadovnikov A., Sharaevskaya A., Stognij A., Nikitov S. 3D Magnonic Crystals. In: Gubbiotti G. (Ed.). Three-Dimensional Magnonics. Singapore: Jenny Stanford Publishing; 2019. P. 67-104. https://doi.org/10.1201/9780429299155-3

4. Belmeguenai M., Bouloussa H., Roussigne Y., Gabor M.S., Petrisor T., Tiusan C., Yang H., Stashkevich A., Cherif S.M. Interface Dzyaloshinskii-Moriya interaction in the interlayer antiferromagnetic-exchange coupled Pt/CoFeB/ Ru/CoFeB systems. Phys. Rev. B. 2017;96(14):144402. https://doi.org/10.1103/PhysRevB.96.144402

5. Berger A., Supper N., Ikeda Y., Lengsfield B., Moser A., Fullerton E.E. Improved media performance in optimally coupled exchange spring layer media. Appl. Phys. Lett. 2008;93(12):122502. https://doi.org/10.1063/1.2985903

6. Bernier N.R., Toth L.D., Koottandavida A., Ioannou M.A., Malz D., Nunnenkamp A., Feofanov A.K., Kippenberg T.J. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun. 2017;8(1):604. https://doi.org/10.1038/s41467-017-00447-1

7. Camley R.E. Nonreciprocal surface waves. Surface Sci. Rep. 1987;7(3-4):103-187. https://doi.org/10.1016/0167-5729(87)90006-9

8. Camley R., Celinski Z., Fal T., Glushchenko A., Hutchison A., Khivintsev Y., Kuanr B., Harward I., Veerakumar V., Zagorodnii V. High-frequency signal processing using magnetic layered structures. J. Magn. Magn. Mater. 2009;321(14):2048-2054. https://doi.org/10.1016/j.jmmm.2008.04.125

9. Chumak A., et al. Roadmap on spin-wave computing. IEEE Transactions on Magnetics. 2022;58(6). https://doi.org/10.1109/TMAG.2022.3149664

10. Balynsky M., Gutierrez D., Chiang H., et al. A magnetometer based on a spin wave interferometer. Sci. Rep. 2017;7(1):11539. https://doi.org/10.1038/s41598-017-11881-y

11. Chumak A.V., Pirro P., Serga A.A., Kostylev M.P., Stamps R.L., Schultheiss H., Hillebrands B. Spin-wave propagation in a microstructured magnonic crystal. Appl. Phys. Lett. 2009;95(26):262508. https://doi.org/10.1063/1.3279138

12. Damon R., Eshbach J. Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids. 1961;19(3-4): 308-320. https://doi.org/10.1016/0022-3697(61)90041-5

13. Demidov V.E., Kostylev M.P., Rott K., Krzysteczko P., Reiss G., Demokritov S.O. Excitation of microwaveguide modes by a stripe antenna. Appl. Phys. Lett. 2009;95(11):112509. https://doi.org/10.1063/1.3231875

14. Demokritov S.O. Magnons. In: Zang J., Cros V., Hoffmann A. (Eds.). Topology in Magnetism. Springer Series in Solid-State Sciences. 2018. V. 192. P. 299-334. https://doi.org/10.1007/978-3-319-97334-0_10

15. Di K., Lim H.S., Zhang V.L., Ng S.C., Kuok M.H. Spin-wave nonreciprocity based on interband magnonic transitions. Appl. Phys. Lett. 2013;103(13):132401. https://doi.org/10.1063/1.4822095

16. Dzyaloshinsky I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids. 1958;4(4):241-255. https://doi.org/10.1016/0022-3697(58)90076-3

17. Evelt M., Demidov V.E., Bessonov V., Demokritov S.O., Prieto J.L., Munoz M., Ben Youssef J., Naletov V.V., de Loubens G., Klein O., Collet M., Garcia-Hernandez K., Bortolotti P., Cros V., Anane A. High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque. Appl. Phys. Lett. 2016;108(17):172406. https://doi.org/10.1063/1.4948252

18. Fert A., Levy P.M. Role of anisotropic exchange interactions in determining the properties of spin-glasses. Phys. Rev. Lett. 1980;44(23):1538-1541. https://doi.org/10.1103/PhysRevLett.44.1538

19. Gallardo R., Schneider T., Chaurasiya A., Oelschlagel A., Arekapudi S., Roldan-Molina A., Hubner R., Lenz K., Barman A., Fassbender J., Lindner J., Hellwig O., Landeros P. Reconfigurable spin-wave nonreciprocity induced by dipolar interaction in a coupled ferromagnetic bilayer. Phys. Rev. Applied. 2019;12(3):034012. https://doi.org/10.1103/PhysRevApplied.12.034012

20. Gladii O., Haidar M., Henry Y., Kostylev M., Bailleul M. Frequency nonreciprocity of surface spin wave in permalloy thin films. Phys. Rev. B. 2016;93(5):054430. https://doi.org/10.1103/PhysRevB.93.054430

21. Gurevich A.G., Melkov G.A. Magnetization Oscillations and Waves. CRC Press; 1996. 464 p.

22. Hartman G.C., Fitch R., Zhuang Y. Nonreciprocal magnetostatic wave propagation in micro-patterned NiFe thin films. IEEE Microwave and Wireless Components Letters. 2014;24(7):484-486. https://doi.org/10.1109/LMWC.2014.2316260

23. Hillebrands B. Spin-wave calculations for multilayered structures. Phys. Rev. B. 1990;41(1):530-540. https://doi.org/10.1103/PhysRevB.41.530

24. Jamali M., Smith A.K., Wang J.-P. Nonreciprocal behavior of the spin pumping in ultra-thin film of CoFeB. J. Appl. Phys. 2016;119(13):133903. https://doi.org/10.1063/1.4945028

25. Khalili Amiri P., Rejaei B., Vroubel M., Zhuang Y. Nonreciprocal spin wave spectroscopy of thin Ni-Fe stripes. Appl. Phys. Lett. 2007;91(6):062502. https://doi.org/10.1063/1.2766842

26. Khitun A., Bao M., Wang K.L. Magnonic logic circuits. J. Phys. D: Appl. Phys. 2010;43(26):264005. https://doi.org/10.1088/0022-3727/43/26/264005

27. Kruglyak V.V., Demokritov S.O., Grundler D. Magnonics. J. Phys. D: Appl. Phys. 2010;43(26):264001. https://doi.org/10.1088/0022-3727/43/26/264001

28. Lan J., Yu W., Wu R., Xiao J. Spin-wave diode. Phys. Rev. X. 2015;5(4):041049. https://doi.org/10.1103/PhysRevX.5.041049

29. Lenk B., Ulrichs H., Garbs F., Munzenberg M. The building blocks of magnonics. Phys. Rep. 2011;507(4-5):107-136. https://doi.org/10.1016/j.physrep.2011.06.003

30. Moriya T. New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 1960;4(5):228-230. https://doi.org/10.1103/PhysRevLett.4.228

31. Mruczkiewicz M., Graczyk P., Lupo P., Adeyeye A., Gubbiotti G., Krawczyk M. Spin-wave nonreciprocity and magnonic band structure in a thin permalloy film induced by dynamical coupling with an array of Ni stripes. Phys. Rev. B. 2017;96(10):104411. https://doi.org/10.1103/PhysRevB.96.104411

32. Mruczkiewicz M., Krawczyk M., Gubbiotti G., Tacchi S., Filimonov Y.A., Kalyabin D.V., Lisenkov I.V., Nikitov S.A. Nonreciprocity of spin waves in metallized magnonic crystal. New J. Phys. 2013;15(11):113023. https://doi.org/10.1088/1367-2630/15/11/113023

33. Mruczkiewicz M., Pavlov E.S., Vysotsky S.L., Krawczyk M., Filimonov Y.A., Nikitov S.A. Observation of magnonic band gaps in magnonic crystals with nonreciprocal dispersion relation. Phys. Rev. B. 2014;90(17):174416. https://doi.org/10.1103/PhysRevB.90.174416

34. Vysotskii S.L., Kazakov G.T., Filimonov Y.A., Maryakhin A.V. Magnetostatic volume waves in exchange-coupled ferrite films. Tech. Phys. 1998;43(7):834-845. https://doi.org/10.1134/1.1259081

35. Neusser S., Grundler D. Magnonics: Spin waves on the nanoscale. Adv. Mater. 2009;21(28):2927-2932. https://doi.org/10.1002/adma.200900809

36. O'Keeffe T.W., Patterson R.W. Magnetostatic surface-wave propagation in finite samples. J. Appl. Phys. 1978;49(9):4886-4895. https://doi.org/10.1063/1.325522

37. Reiskarimian N., Krishnaswamy H. Magnetic-free non-reciprocity based on staggered commutation. Nat. Commun. 2016;7:11217. https://doi.org/10.1038/ncomms11217

38. Sadovnikov A.V., Beginin E.N., Sheshukova S.E., Sharaevskii Y.P., Stognij A.I., Novitski N.N., Sakharov V.K., Khivintsev Y.V., Nikitov S.A. Route toward semiconductor magnonics: Light-induced spinwave nonreciprocity in a YIG/GaAs structure. Phys. Rev. B. 2019;99(5):054424. https://doi.org/10.1103/PhysRevB.99.054424

39. Sadovnikov A.V., Grachev A.A., Odintsov S.A., Martyshkin A.A., Gubanov V.A., Sheshukova S.E., Nikitov S.A. Neuromorphic calculations using lateral arrays of magnetic microstructures with broken translational symmetry. JETP Letters. 2018;108(5):312-317. https://doi.org/10.1134/S0021364018170113

40. Sadovnikov A.V., Grachev A.A., Sheshukova S.E., Sharaevskii Y.P., Serdobintsev A.A., Mitin D.M., Nikitov S.A. Magnon straintronics: Reconfigurable spin-wave routing in strain-controlled bilateral magnetic stripes. Phys. Rev. Lett. 2018;120(25):257203. https://doi.org/10.1103/physrevlett.120.257203

41. Sadovnikov A.V., Odintsov S.A., Beginin E.N., Sheshukova S.E., Sharaevskii Y.P., Nikitov S.A. Toward nonlinear magnonics: Intensity-dependent spinwave switching in insulating sidecoupled magnetic stripes. Phys. Rev. B. 2017;96(14):144428. https://doi. org/10.1103/PhysRevB.96.144428

42. Sander D., Valenzuela S.O., Makarov D., Marrows C.H., Fullerton E.E., Fischer P., McCord J., Vavassori P., Mangin S., Pirro P., Hillebrands B., Kent A.D., Jungwirth T., Gutfleisch O., Kim C.G., Berger A. The 2017 magnetism roadmap. J. Phys. D: Appl. Phys. 1017;50(36):363001. https://doi.org/10.1088/1361-6463/aa81a1

43. Shen Z., Zhang Y.-L., Chen Y., Sun F.-W., Zou X.-B., Guo G.-C., Zou C.-L., Dong C.-H. Reconfigurable optomechanical circulator and directional amplifier. Nat. Commun. 2018;9(1):1797. https://doi.org/10.1038/s41467-018-04187-8

44. Sounas D., Alu A. Non-reciprocal photonics based on time modulation. Nature Photon. 2017;11:774-783. https://doi.org/10.1038/s41566-017-0051-x

45. Suess D. Multilayer exchange spring media for magnetic recording. Appl. Phys. Lett. 2006;89(11):113105. https://doi.org/10.1063/1.2347894

46. Tacchi S., Gruszecki P., Madami M., Carlotti G., Klos J., Krawczyk M., Adeyeye A. Universal dependence of the spin wave band structure on the geometrical characteristics of two-dimensional magnonic crystals. Sci. Rep. 2015;5:10367. https://doi.org/10.1038/srep10367

47. Vansteenkiste A., Leliaert J., Dvornik M., Helsen M., Garcia-Sanchez F., Waeyenberge B.V. The design and verification of MuMax3. AIP Advances. 2014;4(10):107133. https://doi.org/10.1063/1.4899186

48. Vetrova I.V., Zelent M., Soltys J., Gubanov V.A., Sadovnikov A.V., Scepka T., Derer J., Stoklas R., Cambel V., Mruczkiewicz M. Investigation of selfnucleated skyrmion states in the ferromagnetic/ nonmagnetic multilayer dot. Appl. Phys. Lett. 2021;118(21):212409. https://doi.org/10.1063/5.0045835

49. Vogel M., Chumak A.V., Waller E.H., Langner T., Vasyuchka V.I., Hillebrands B., Freymann, G. Optically reconfigurable magnetic materials. Nature Phys. 2015;11(6):487-491. https://doi.org/10.1038/nphys3325

50. Wang X.S., Zhang H.W., Wang X.R. Topological magnonics: A paradigm for spin-wave manipulation and device design. Phys. Rev. Applied. 2018;9(2):024029. https://doi.org/10.1103/PhysRevApplied.9.024029

51.


Supplementary files

1. Schematic representation of a two-layer magnon microwave waveguide with microwave antennas on top of one of the layers
Subject
Type Исследовательские инструменты
View (83KB)    
Indexing metadata ▾
  • The possibility of frequency-selective propagation of backward waves in a magnon microwave consisting of two layers with a high value of saturation magnetization was demonstrated.
  • It is shown that the multimode propagation of spin waves is accompanied by nonreciprocity of the spin-wave signal, which manifests itself in the severity and frequency characteristics.
  • The concept of a two-layer spin-wave waveguide can underlie the manufacture of magnon interconnects and magnon interferometers with support for multiband operation modes

Review

For citations:


Odintsov S.A., Lock E.H., Beginin E.N., Sadovnikov A.V. Nonreciprocal propagation of spin waves in a bilayer magnonic waveguide based on yttrium-iron garnet films. Russian Technological Journal. 2022;10(4):55-64. https://doi.org/10.32362/2500-316X-2022-10-4-55-64

Views: 613


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)