Preview

Russian Technological Journal

Advanced search

Collective dynamics of domain structures in liquid crystalline lipid bilayers

https://doi.org/10.32362/2500-316X-2022-10-4-44-54

Abstract

Objectives. Numerous studies of biosystems indicate the distinct role of quasi-one-dimensional molecular structures in the transport of energy, charges, and information. Of particular interest are the studies on the collective dynamics of quasi-one-dimensional lateral structures in liquid crystalline membranes and the possibility of local excitation transfer through such structures. In this paper, we developed a model for the collective dynamics of quasi-one-dimensional domain structures in lipid bilayers interacting with the environment. The objective is to study the mechanisms of the directed energy transport in liquid crystalline lipid membranes.

Methods. In this paper, the percolation domain structures formed as a result of phase separation in multicomponent lipid membranes are considered to be quasi-one-dimensional domain structures. The model distinguishes two subsystems interacting with each other and differing in their structural and dynamic properties, i.e., the membrane surface formed by polar groups of lipid molecules and the internal hydrophilic region of the membrane formed by acyl chains of lipids. The acyl chain subsystem is simulated using the Ginzburg-Landau Hamiltonian which considers the dependence of its dynamics on temperature close to the lipid melting phase transition temperature Tc.

Results. Analysis of dynamic states has shown that elastic excitations moving at constant rate in the form of solitons may exist near temperatures Tc in the considered quasi-one-dimensional domain structures. In addition, motion of the elastic excitation region (kink) along domain structures in the acyl chain region causes the formation of acoustic soliton, i.e., the compression region in the polar group subsystem moving in concert with the kink displacement. The soliton localization region covers about 10 molecules and depends significantly on the interaction parameter of the polar group and acyl chain subsystems. Soliton moves at a subsonic speed determined, in particular, by the magnitude of an external force.

Conclusions. The model developed in this paper shows that liquid crystalline domain structures in lipid membranes exhibit properties of active media, wherein the formation and displacement of localized elastic excitations on macroscopic spatial and temporal scales may occur. The proposed molecular mechanism of the soliton transport along quasi-one-dimensional domain structures may be used for describing the directed energy transfer along lateral domain channels in biomembranes and the cooperative functioning of the membrane bioenergetic and receptor complexes.

About the Authors

V. N. Kadantsev
MIREA - Russian Technological University
Russian Federation

Vasiliy N. Kadantsev - Dr. Sci. (Phys.-Math.), Professor, Department of Biocybernetic Systems and Technologies, Institute of Artificial Intelligence, MIREA - Russian Technological University.

78, Vernadskogo pr., Moscow, 119454.


Competing Interests:

None



A. N. Goltsov
MIREA - Russian Technological University
Russian Federation

Alexey N. Goltsov - Dr. Sci. (Phys.-Math.), Professor, Department of Biocybernetic Systems and Technologies, Institute of Artificial Intelligence, MIREA - Russian Technological University.

78, Vernadskogo pr., Moscow, 119454.


Competing Interests:

None



References

1. Gennis R. Biomembrany: molekulyarnaya struktura i funktsii (Biomembranes: molecular structure and function). Moscow: Mir; 1997. 624 p. (in Russ.). ISBN 5-03-002419-0 [Gennis R. Biomembranes: Molecular Structure and Function. New York: Springer; 1989. 533 p.]

2. Zhao J., Gulan U., Horie T., et al. Advances in biological liquid crystals. Small. 2019;15(18):1900019. https://doi.org/10.1002/smll.201900019

3. Nesterov S.V., Chesnokov Y.M., Kamyshinsky R.A., Yaguzhinsky L.S., Vasilov R.G. Determining the structure and location of the ATP synthase in the membranes of rat's heart mitochondria using cryoelectron tomography. Nanotechnol. Russia. 2020;15(1):83-89 (in Russ.) https://doi.org/10.1134/S1995078020010139 [Original Russian Text: Nesterov S.V., Chesnokov Y.M., Kamyshinsky R.A., Yaguzhinsky L.S., Vasilov R.G. Determining the structure and location of the ATP synthase in the membranes of rat's heart mitochondria using cryoelectron tomography. Rossiiskie nanotekhnologii. 2020;15(1):93-100 (in Russ). https://doi.org/10.1134/S1992722320010136 ]

4. Zhou Y., Prakash P., Liang H., Cho K.J., Gorfe A.A., Hancock J.F. Lipid-sorting specificity encoded in K-ras membrane anchor regulates signal output. Cell. 2017;168(1-2):239-251.e16. https://doi.org/10.1016/j.cell.2016.11.059

5. Marsh D. Connectivity of membrane domains. Biophys. J. 1993;64(2):299-300. https://doi.org/10.1016/S0006-3495(93)81368-7

6. Vaz W.L.C. Percolation properties of two-component, two-phase phospholipid bilayers. Mol. Membr. Biol. 1995;12(1):39-43. https://doi.org/10.3109/09687689509038493

7. Griesbauer J., Wixforth A., Schneider M.F. Wave propagation in lipid monolayers. Biophy. J. 2009;97(10):2710-2716. https://doi.org/10.1016/j.bpj.2009.07.049

8. Bolterauer H., Tuszynski J.A., Sataric M.V Frohlich and Davydov regimes in the dynamics of dipolar oscillations of biological membranes. Phys. Rev. A. 1991;44(2): 1366-1381. https://doi.org/10.1103/PhysRevA.44.1366

9. Collins M.A. Solitons in chemical physics. In: Advances in Chemical Physics. 2007;53:225-339. https://doi.org/10.1002/9780470142776.ch3

10. Wack D.C., Webb W.W. Synchrotron x-ray study of the modulated lamellar phase Pe in the lecithin-water system. Phys. Rev. A. 1989;40(5):2712-2730. https://doi.org/10.1103/PhysRevA.40.2712

11. Davydov A.S. Solitons in Molecular Systems. Dordrecht: Springer Netherlands; 1985. 317 p. https://doi.org/10.1007/978-94-017-3025-9

12. Scott A.C. Dynamics of Davydov solitons. Phys. Rev. A. 1982;26(1):578. https://doi.org/10.1103/PhysRevA.26.578

13. Lupichev L.N., Savin A.V., Kadantsev V.N. Synergetics of Molecular Systems. Springer Series in Synergetics. Springer International Publishing; 2015. https://doi.org/10.1007/978-3-319-08195-3

14. Yakushevich L.V., Savin A.V., Manevitch L.I. Nonlinear dynamics of topological solitons in DNA. Phys. Rev. E. 2002;66(1):016614. https://doi.org/10.1103/PhysRevE.66.016614

15. Kadantsev V.N., Goltsov A.N. Collective excitations in alpha-helical protein molecule. Russian Technological Journal. 2018;6(2):32-45 (in Russ.). https://doi.org/10.32362/2500-316X-2018-6-2-32-45

16. Kadantsev V.N., Goltsov A. Collective excitations in a-helical protein structures interacting with the water environment. Electromagn. Biol. Med. 2020;39(4): 419-432. https://doi.org/10.1080/15368378.2020.1826961

17. Meder D., Moreno M.J., Verkade P., Vaz W.L.C., Simons K. Phase coexistence and connectivity in the apical membrane of polarized epithelial cells. Proc. Natl. Acad. Sci. USA. 2006;103(2):329-334. https://doi.org/10.1073/pnas.0509885103

18. Risovic D., Frka S., Kozarac Z. The structure of percolating lipid monolayers. J. Colloid Interface Sci. 2012;373(1):116-121. https://doi.org/10.1016/j.jcis.2011.12.009

19. J0rgensen K., Mouritsen O.G. Phase separation dynamics and lateral organization of two-component lipid membranes. Biophys. J. 1995;69(3):942-954. https://doi.org/10.1016/S0006-3495(95)79968-4

20. Goltsov A.N. Electromagnetic-field-induced oscillations of the lipid domain structures in the mixed membranes. Bioelectrochem. Bioenerg. 1999;48(2):311-316. https://doi.org/10.1016/S0302-4598(99)00040-9

21. Salari V., Tuszynski J., Rahnama M., Bernroider G. Plausibility of quantum coherent states in biological systems. J. Phys.: Conf. Ser. 2011;306(1):012075. https://doi.org/10.1088/1742-6596/306/1/012075

22. Shrivastava S., Schneider M.F. Evidence for twodimensional solitary sound waves in a lipid controlled interface and its implications for biological signalling. J. R. Soc. Interface. 2014;11(97):20140098. https://doi.org/10.1098/rsif.2014.0098

23. Heimburg T., Jackson A.D. On soliton propagation in biomembranes and nerves. Proc. Natl. Acad. Sci. USA. 2005;102(28):9790-9795. https://doi.org/10.1073/pnas. 0503823102

24. Lei L., Changqing S., Juelian S., Lam P.M., Yun H. Soliton propagation in liquid crystals. Phys. Rev. Lett. 1982;49(18):1335. https://doi.org/10.1103/PhysRevLett. 49.1335

25. Shen Y., Dierking I. Dynamics of electrically driven solitons in nematic and cholesteric liquid crystals. Commun. Phys. 2020;3(1):14. https://doi.org/10.1038/s42005-020-0288-4

26. Cavallo F., De Giovanni C., Nanni P., Forni G., Lollini P.-L. 2011: the immune hallmarks of cancer. Cancer Immunol. Immunother. 2011;60(3):319-326. https://doi.org/10.1007/s00262-010-0968-0

27. Zmuidzinas J.S. Electron trapping and transport by supersonic solitons in one-dimensional systems. Phys. Rev. B. 1978;17(10):3919. https://doi.org/10.1103/PhysRevB.17.3919

28. Kadantsev V.N., Goltsov A.N., Kondakov M.A. Electrosoliton dynamics in a thermalized molecular chain. Russian Technological Journal. 2020;8(1): 43-57 (in Russ.). https://doi.org/10.32362/2500-316X-2020-8-1-43-57


Supplementary files

1. Soliton formation
Subject
Type Исследовательские инструменты
View (74KB)    
Indexing metadata ▾
  • A model for the collective dynamics of quasi-one-dimensional domain structures in lipid bilayers interacting with the environment was developed.
  • Analysis of model dynamic states has shown that elastic excitations in the form of solitons moving at constant rate may exist near the lipid melting phase transition temperature in the considered quasi-one-dimensional domain structures.
  • The soliton localization region covers about 10 molecules and depends significantly on the interaction parameter of the polar group and lipid acyl chain subsystems.

Review

For citations:


Kadantsev V.N., Goltsov A.N. Collective dynamics of domain structures in liquid crystalline lipid bilayers. Russian Technological Journal. 2022;10(4):44-54. https://doi.org/10.32362/2500-316X-2022-10-4-44-54

Views: 491


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)