Preview

Russian Technological Journal

Advanced search

SECOND HARMONIC GENERATION IN THE CENTROSYMMETRIC ANTIFERROMAGNET LaFeO3

https://doi.org/10.32362/2500-316X-2017-5-2-22-31

Abstract

The paper presents the results of experimental and theoretical studies of nonlinear optical properties of LaFeO3 thin film, which is antiferromagnetic and centrosymmetric, the latter provides prohibition of second harmonic generation in electric-dipole approximation. Spectroscopic studies have shown the presence of the resonant frequency in the spectrum of optical second harmonic generation (SHG) at the pump photon energy 2ћω ≈ 2.85 eV. Comparison of SHG and absorption spectra at the second harmonic wavelength, the new characteristics have been identified, related to the presence of the electronic transition which results in the resonance spectral dependence. The models were suggested for the description of the polarization dependency for the two pump laser wavelengths (non-resonant 800 nm and resonant 860 nm), as well as for the calculation of the nonlinear susceptibility tensor components. The magnetically induced SHG was observed for the conditions of maximal suppression of crystallographic (electric dipole- or electric quadruple) contribution obtained by choice of appropriate polarization rules for the pump and second harmonic waves.

About the Author

A. M. Buryakov
Moscow Technological University
Russian Federation


References

1. Nalla V., Medishetty R., Wang Y., Bai Z., Sun H., Wei J., Vittal J.J. Second harmonic generation from the “centrosymmetric” crystals // IUCrJ. 2015. V. 2. № Pt 3. P. 317-321.

2. Kaminski B., Lafrentz M., Pisarev R. V., Yakovlev D.R., Pavlov V. V., Lukoshkin V.A., Henriques A.B., Springholz G., Bauer G., Abramof E., Rappl P.H.O., Bayer M. Optical second harmonic generation in the centrosymmetric magnetic semiconductors EuTe and EuSe // Phys. Rev. B. American Physical Society. 2010. V. 81. № 15. P. 155201.

3. Meijer E.W., Havinga E.E., Rikken G.L.J.A. Second-harmonic generation in centrosymmetric crystals of chiral molecules // Phys. Rev. Lett. American Physical Society. 1990. V. 65. № 1. P. 37-39.

4. Ashwell G.J., Jefferies G., Hamilton D.G., Lynch D.E., Roberts M.P.S., Bahra G.S., Brown C.R. Strong second-harmonic generation from centrosymmetric dyes // Nature. 1995. V. 375. № 6530. P. 385-388.

5. Bloembergen N. Nonlinear optics. Reading, MA: W.A. Benjamin, Inc. 1977 (1965). 229 p.

6. Shen Y.R. The principles of nonlinear optics. Wiley-Interscience, 2003. 563 p.

7. Fiebig M., Fröhlich D., Krichevtsov B.B., Pisarev R.V. Second harmonic generation and magnetic-dipole-electric-dipole interference in antiferromagnetic Cr2O3 // Phys. Rev. Lett. American Physical Society. 1994. V. 73. № 15. P. 2127-2130.

8. Biegalski M.D., Qiao L., Gu Y., Mehta A., He Q., Takamura Y., Borisevich A., Chen L.- Q. Impact of symmetry on the ferroelectric properties of CaTiO3 thin films // Appl. Phys. Lett. 2015. V. 106. № 16. P. 162904.

9. Prinz G.A. Magnetoelectronics applications // J. Magn. Magnet. Mater. 1999. V. 200. № 1. P. 57-68.

10. Ando K., Fujita S., Ito J., Yuasa S., Suzuki Y., Nakatani Y., Miyazaki T., Yoda H. Spin-transfer torque magnetoresistive random-access memory technologies for normally off computing // J. Appl. Physics. 2014. V. 115. № 17.

11. LaFeO3 crystal structure, physical properties // Ternary Compounds, Organic Semiconductors. Berlin/Heidelberg: Springer-Verlag. P. 1-4.

12. Fiebig M., Fröhlich D., Lottermoser T., Pavlov V. V., Pisarev R. V., Weber H.-J. Second harmonic generation in the centrosymmetric antiferromagnet NiO // Phys. Rev. Lett. 2001. V. 87, № 13. P. 137202.

13. Kielich S. Optical second-harmonic generation by electrically polarized isotropic media // IEEE J. Quantum Electron. 1969. V. 5. № 12.

14. Шен И.Р. Принципы нелинейной оптики. М.: Наука, 1989. 560 с.

15. Kielich S.Z.R. Optical nonlinear phenomena in magnetized crystals and isotropic bodies // Acta Phys. Pol. A. 1973. V. 43. P. 579-603.

16. Kielich S.Z.R. On new nonlinear magneto-optical phenomena in crystals and liquids // Opt. Acta (Lond). 1973. V. 20. P. 867-877.

17. Tabor W.J., Anderson A.W., Van Uitert L.G. Visible and infrared Faraday rotation and birefringence of single-crystal rare-earth orthoferrites // J. Appl. Phys. 1970. V. 41. № 7. P. 3018-3021.

18. Sipe J.E., Mizrahi V., Stegeman G.I. Fundamental difficulty in the use of secondarmonic generation as a strictly surface probe // Phys. Rev. B. American Physical Society. 1987. V. 35. № 17. P. 9091-9094.

19. Sipe J., Moss D., van Driel H. Phenomenological theory of optical second- and thirdharmonic generation from cubic centrosymmetric crystals // Phys. Rev. B. American Physical Society. 1987. V. 35. № 3. P. 1129-1141.

20. Guyot-Sionnest P., Shen Y.R. Bulk contribution in surface second-harmonic generation // Phys. Rev. B. American Physical Society. 1988. V. 38. № 12. P. 7985-7989.

21. Maki J.J., Kauranen M., Persoons A. Surface second-harmonic generation from chiral materials // Phys. Rev. B. American Physical Society. 1995. V. 51. № 3. P. 1425-1434.

22. Muthukumar V.N., Valentí R., Gros C. Theory of nonreciprocal optical effects in antiferromagnets: The case of Cr2O3 // Phys. Rev. B. American Physical Society. 1996. V. 54. № 1. P. 433-440.


Review

For citations:


Buryakov A.M. SECOND HARMONIC GENERATION IN THE CENTROSYMMETRIC ANTIFERROMAGNET LaFeO3. Russian Technological Journal. 2017;5(2):22-31. (In Russ.) https://doi.org/10.32362/2500-316X-2017-5-2-22-31

Views: 556


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)