Magnetoelectric effects in stripe- and periodic heterostructures based on nickel–lead zirconate titanate bilayers
https://doi.org/10.32362/2500-316X-2022-10-3-64-73
Abstract
Objectives. A topical task in the design of magnetoelectric (ME) devices based on composite ferromagnetic-piezoelectric heterostructures involves reducing their dimensions to increase their operating frequencies and optimize their integration in modern electronics. The study set out to investigate the influence of in-plane dimensions on the characteristics of ME effects in stripe and periodic nickel-lead zirconate titanate heterostructures manufactured via electrolytic deposition.
Methods. Lead zirconate titanate disks with Ag-electrodes were used for manufacturing the ME heterostructures; Ni was deposited on one Ag-electrode only.
Results. While a reduction in stripe size leads to an increase in the frequency of the resonant ME effect, it is followed by a decrease in ME conversion efficiency. The ME coefficient for the periodic heterostructures is about ~1 V/(Oe·cm). By increasing the angle between the magnetic field H and the Ni-stripe axis from 0° to 90°, a 2.5-fold increase in the optimal field Hm and a 4-fold drop in the maximum amplitude of ME voltage umax(Hm) was achieved.
Conclusions. In periodic heterostructures, the frequency of the resonant ME effect is determined by the substrate’s size, while ME conversion efficiency depends on the width of the Ni stripes and the distance between them. The observed anisotropy of the ME effects in the investigated heterostructures is explained in terms of demagnetization effects. In the future, the anisotropic ME effect in the periodic heterostructures could be used to develop magnetic field sensors that are sensitive to field orientation.
Keywords
About the Authors
F. A. FedulovRussian Federation
Fedor A. Fedulov - Cand. Sci. (Eng.), Engineer, Scientific and Education Center “Magnetoelectric materials and devices.
78, Vernadskogo pr., Moscow, 119454. Scopus Author ID 57194284263
Competing Interests:
not
D. V. Saveliev
Russian Federation
Dmitriy V. Saveliev - Postgraduate Student, Department of Nanoelectronics, Institute for Advanced Technologies and Industrial Programming.
78, Vernadskogo pr., Moscow, 119454. Scopus Author ID 57196479660, ResearcherID D-8952-2019
Competing Interests:
not
D. V. Chashin
Russian Federation
Dmitriy V. Chashin - Cand. Sci. (Eng.), Lead Engineer, Scientific and Education Center “Magnetoelectric materials and devices.
78, Vernadskogo pr., Moscow, 119454. Scopus Author ID 23977510200
Competing Interests:
not
V. I. Shishkin
Russian Federation
Vladimir I. Shishkin - Cand. Sci. (Chem.), Assistant Professor, Deputy Director, Education and Science Association “Electronics.
78, Vernadskogo pr., Moscow, 119454
Competing Interests:
not
Yu. K. Fetisov
Russian Federation
Yuri K. Fetisov - Dr. Sci. (Phys.–Math.), Professor, Director, Scientific and Education Center “Magnetoelectric materials and devices.
78, Vernadskogo pr., Moscow, 119454
Competing Interests:
not
References
1. Bichurin M., Petrov R., Sokolov O., Leontiev V., Kuts V., Kiselev D., Wang Y. Magnetoelectric magnetic field sensors: A review. Sensors. 2021;21(18):6322. https://doi.org/10.3390/s21186232
2. Gutierrez J., Lasheras A., Martins P., Pereira N., Barandiaran J.M., Lanseros-Mendes S. Metallic glass/PVDF magnetoelectric laminates for resonant sensors and actuators: A review. Sensors. 2017;17(6):1251. https://doi.org/10.3390/s17061251
3. Tu C., Chu Z.-Q., Spetzler B., et al. Mechanical-resonanceenhanced thin-film magnetoelectric heterostructures for magnetometers, mechanical antennas, tunable RF inductors, and filters. Materials. 2019;12(14):2259. https://doi.org/10.3390/ma12142259
4. Suchtelen van J. Product properties: a new application of composite materials. Philips Res. Rep. 1972;27:28–37.
5. Bichurin M., Filippov D., Petrov V., Laletsin V., Paddubnaya N., Srinivasan G. Resonance magnetoelectric effects in layered magneto-strictive-piezoelectric composites. Phys. Rev. B. 2003;68(13):10–13. https://doi.org/10.1103/PhysRevB.68.132408
6. Kopyl S., Surmenev R., Surmeneva M., Fetisov Y., Kholkin A. Magnetoelectric effect: principles and applications in biology and medicine – a review. Mater. Today Bio. 2021;12:100149. https://doi.org/10.1016/j.mtbio.2021.100149
7. Li L., Yao X., Gan L., Zhang X., Zhou J.-P. Magnetoelectric anisotropy in laminate composite for detecting magnetic field. Func. Mater. Lett. 2018;12(01):1850098. https://doi.org/10.1142/S1793604718500984
8. Vopsaroiu M., Stewart M., Fry T., Cain M., Srinivasan G. Tuning the magnetoelectric effect in multiferroic composites via crystallographic texture. IEEE Trans. Magn. 2008;44(11):3017–3020. https://doi.org/10.1109/TMAG.2008.2001649
9. Burdin D.A., Ekonomov N.A., Gordeev S.N., Fetisov Y.K. Anisotropy of ME effect in an amorphous ferromagnetpiezoelectric heterostructure. J. Magn. Mag. Mater. 2021;521(Part 2):167530. https://doi.org/10.1016/j.jmmm.2020.167530
10. Fetisov Y., Chashin D., Saveliev D., Fetisov L., Chamonin M. Anisotropic magnetoelectric effect in a planar heterostructure comprising piezoelectric ceramics and magnetostrictive fibrous composite. Materials. 2019;12(19):3228. https://doi.org/10.3390/ma12193228
11. Chashin D.V., Fetisov Y.K., Tafintseva E.V., Srinivasan G. Magnetoelectric effects in layered samples of lead zirconium titanate and nickel films. Solid State Comm. 2008;148(1–2): 55–58. https://doi.org/10.1016/j.ssc.2008.07.015
12. Lasheras A., Gutierrez J., Barandiaran J.M. Quantification of size effects in the magnetoelectric response of metallic glass/PVDF laminates. Appl. Phys. Lett. 2016;108(22):222903. https://doi.org/10.1063/1.4953156
13. Timoshenko S. Vibration Problems in Engineering. NY: D. Van Nostrand Company Inc.; 1955. 468 p.
14. Nan T., Hui Y., Rinaldi M., Sun N.X. Self-biased 215 MHz magnetoelectric MEMS resonator for ultra-sensitive DC magnetic fields detection. Sci. Rep. 2013;3:1985. https://doi.org/10.1038/srep01985
15. Bichurin M., Petrov V., Srinivasan G. Theory of lowfrequency magnetoelectric coupling in magnetostrictivepiezoelectric bilayers. Phys. Rev. B. 2003;68(5):1–13. https://doi.org/10.1103/PhysRevB.68.054402
16. Osborn J.A. Demagnetizing factors of the general ellipsoid. Phys. Rev. 1945;67(11–12):351–357. https://doi.org/10.1103/PhysRev.67.351
17. Chen D.X., Pardo E., Sanchez A. Demagnetizing factors of rectangular prisms and ellipsoids. IEEE Trans. Magn. 2002;38(4):1742–1752. https://doi.org/10.1109/TMAG.2002.1017766
18. Malkinski L.M., Yu M., Scherer II D.J. Magnetostatic interactions in two-dimensional arrays of magnetic strips. Mater. Res. Symp. Proc. 2010;1250:G08–03. https://doi.org/10.1557/PROC-1250-G08-03
19. Encinas-Oropesa A., Demand M., Piraux L., Huynen I., Ebels U. Dipolar interaction in arrays of nickel nanowires studied by ferromagnetic resonance. Phys. Rev. B. 2001;63(10):104415. https://doi.org/10.1103/PhysRevB.63.104415
20. Tartakovskaya E.V., Vovk A., Golub V. Dipolar interaction in ordered superlattices of ferromagnetic nanoparticles. Phys. Stat. Sol. A. 2008;205(8):1787–1789. https://doi.org/10.1002/pssa.200723610
21. Zhai J., Dong S., Xing Z., Li J., Viehland D. Geomagnetic sensor based on giant magnetoelectric effect. Appl. Phys. Lett. 2007;91(12):125513. https://doi.org/10.1063/1.2789391
22. Duc N.H., Tu B.D., Ngoc N.T., Lap V.D., Giang T.H. Metglas/PZT-magnetoelectric 2-D geomagnetic device for computing precise angular position. IEEE Trans. Magn. 2013;49(8):4839–4842. https://doi.org/10.1109/TMAG.2013.2241446
Supplementary files
|
1. Dependence of the voltage u0 for a periodic Ni–PZT structure with T = 100 μm on the orientation angle φ of the field H in the plane. Points—experiment, solid line—calculation Points—experiment, solid line—calculation | |
Subject | ||
Type | Исследовательские инструменты | |
View
(170KB)
|
Indexing metadata ▾ |
- The strip and periodic heterostructures based on nickel–lead zirconate titanate bilayers were fabricated.
- A decrease in the stripe size led to a decrease in the magnetoelectric conversion efficiency.
- Anisotropy of the magnetoelectric effects in periodic magnetoelectric heterostructures could be used to develop magnetic field sensors sensitive to field orientation.
Review
For citations:
Fedulov F.A., Saveliev D.V., Chashin D.V., Shishkin V.I., Fetisov Yu.K. Magnetoelectric effects in stripe- and periodic heterostructures based on nickel–lead zirconate titanate bilayers. Russian Technological Journal. 2022;10(3):64-73. https://doi.org/10.32362/2500-316X-2022-10-3-64-73