Preview

Russian Technological Journal

Advanced search

Magnetoelectric effects in stripe- and periodic heterostructures based on nickel–lead zirconate titanate bilayers

https://doi.org/10.32362/2500-316X-2022-10-3-64-73

Abstract

Objectives. A topical task in the design of magnetoelectric (ME) devices based on composite ferromagnetic-piezoelectric heterostructures involves reducing their dimensions to increase their operating frequencies and optimize their integration in modern electronics. The study set out to investigate the influence of in-plane dimensions on the characteristics of ME effects in stripe and periodic nickel-lead zirconate titanate heterostructures manufactured via electrolytic deposition.

Methods. Lead zirconate titanate disks with Ag-electrodes were used for manufacturing the ME heterostructures; Ni was deposited on one Ag-electrode only.

Results. While a reduction in stripe size leads to an increase in the frequency of the resonant ME effect, it is followed by a decrease in ME conversion efficiency. The ME coefficient for the periodic heterostructures is about ~1 V/(Oe·cm). By increasing the angle between the magnetic field H and the Ni-stripe axis from 0° to 90°, a 2.5-fold increase in the optimal field Hm and a 4-fold drop in the maximum amplitude of ME voltage umax(Hm) was achieved.

Conclusions. In periodic heterostructures, the frequency of the resonant ME effect is determined by the substrate’s size, while ME conversion efficiency depends on the width of the Ni stripes and the distance between them. The observed anisotropy of the ME effects in the investigated heterostructures is explained in terms of demagnetization effects. In the future, the anisotropic ME effect in the periodic heterostructures could be used to develop magnetic field sensors that are sensitive to field orientation.

About the Authors

F. A. Fedulov
MIREA – Russian Technological University
Russian Federation

Fedor A. Fedulov - Cand. Sci. (Eng.), Engineer, Scientific and Education Center “Magnetoelectric materials and devices.

78, Vernadskogo pr., Moscow, 119454. Scopus Author ID 57194284263


Competing Interests:

not



D. V. Saveliev
MIREA – Russian Technological University
Russian Federation

Dmitriy V. Saveliev - Postgraduate Student, Department of Nanoelectronics, Institute for Advanced Technologies and Industrial Programming.

78, Vernadskogo pr., Moscow, 119454. Scopus Author ID 57196479660, ResearcherID D-8952-2019


Competing Interests:

not



D. V. Chashin
MIREA – Russian Technological University
Russian Federation

Dmitriy V. Chashin - Cand. Sci. (Eng.), Lead Engineer, Scientific and Education Center “Magnetoelectric materials and devices.

78, Vernadskogo pr., Moscow, 119454. Scopus Author ID 23977510200


Competing Interests:

not



V. I. Shishkin
MIREA – Russian Technological University
Russian Federation

Vladimir I. Shishkin - Cand. Sci. (Chem.), Assistant Professor, Deputy Director, Education and Science Association “Electronics.

78, Vernadskogo pr., Moscow, 119454


Competing Interests:

not



Yu. K. Fetisov
MIREA – Russian Technological University
Russian Federation

Yuri K. Fetisov - Dr. Sci. (Phys.–Math.), Professor, Director, Scientific and Education Center “Magnetoelectric materials and devices.

78, Vernadskogo pr., Moscow, 119454


Competing Interests:

not



References

1. Bichurin M., Petrov R., Sokolov O., Leontiev V., Kuts V., Kiselev D., Wang Y. Magnetoelectric magnetic field sensors: A review. Sensors. 2021;21(18):6322. https://doi.org/10.3390/s21186232

2. Gutierrez J., Lasheras A., Martins P., Pereira N., Barandiaran J.M., Lanseros-Mendes S. Metallic glass/PVDF magnetoelectric laminates for resonant sensors and actuators: A review. Sensors. 2017;17(6):1251. https://doi.org/10.3390/s17061251

3. Tu C., Chu Z.-Q., Spetzler B., et al. Mechanical-resonanceenhanced thin-film magnetoelectric heterostructures for magnetometers, mechanical antennas, tunable RF inductors, and filters. Materials. 2019;12(14):2259. https://doi.org/10.3390/ma12142259

4. Suchtelen van J. Product properties: a new application of composite materials. Philips Res. Rep. 1972;27:28–37.

5. Bichurin M., Filippov D., Petrov V., Laletsin V., Paddubnaya N., Srinivasan G. Resonance magnetoelectric effects in layered magneto-strictive-piezoelectric composites. Phys. Rev. B. 2003;68(13):10–13. https://doi.org/10.1103/PhysRevB.68.132408

6. Kopyl S., Surmenev R., Surmeneva M., Fetisov Y., Kholkin A. Magnetoelectric effect: principles and applications in biology and medicine – a review. Mater. Today Bio. 2021;12:100149. https://doi.org/10.1016/j.mtbio.2021.100149

7. Li L., Yao X., Gan L., Zhang X., Zhou J.-P. Magnetoelectric anisotropy in laminate composite for detecting magnetic field. Func. Mater. Lett. 2018;12(01):1850098. https://doi.org/10.1142/S1793604718500984

8. Vopsaroiu M., Stewart M., Fry T., Cain M., Srinivasan G. Tuning the magnetoelectric effect in multiferroic composites via crystallographic texture. IEEE Trans. Magn. 2008;44(11):3017–3020. https://doi.org/10.1109/TMAG.2008.2001649

9. Burdin D.A., Ekonomov N.A., Gordeev S.N., Fetisov Y.K. Anisotropy of ME effect in an amorphous ferromagnetpiezoelectric heterostructure. J. Magn. Mag. Mater. 2021;521(Part 2):167530. https://doi.org/10.1016/j.jmmm.2020.167530

10. Fetisov Y., Chashin D., Saveliev D., Fetisov L., Chamonin M. Anisotropic magnetoelectric effect in a planar heterostructure comprising piezoelectric ceramics and magnetostrictive fibrous composite. Materials. 2019;12(19):3228. https://doi.org/10.3390/ma12193228

11. Chashin D.V., Fetisov Y.K., Tafintseva E.V., Srinivasan G. Magnetoelectric effects in layered samples of lead zirconium titanate and nickel films. Solid State Comm. 2008;148(1–2): 55–58. https://doi.org/10.1016/j.ssc.2008.07.015

12. Lasheras A., Gutierrez J., Barandiaran J.M. Quantification of size effects in the magnetoelectric response of metallic glass/PVDF laminates. Appl. Phys. Lett. 2016;108(22):222903. https://doi.org/10.1063/1.4953156

13. Timoshenko S. Vibration Problems in Engineering. NY: D. Van Nostrand Company Inc.; 1955. 468 p.

14. Nan T., Hui Y., Rinaldi M., Sun N.X. Self-biased 215 MHz magnetoelectric MEMS resonator for ultra-sensitive DC magnetic fields detection. Sci. Rep. 2013;3:1985. https://doi.org/10.1038/srep01985

15. Bichurin M., Petrov V., Srinivasan G. Theory of lowfrequency magnetoelectric coupling in magnetostrictivepiezoelectric bilayers. Phys. Rev. B. 2003;68(5):1–13. https://doi.org/10.1103/PhysRevB.68.054402

16. Osborn J.A. Demagnetizing factors of the general ellipsoid. Phys. Rev. 1945;67(11–12):351–357. https://doi.org/10.1103/PhysRev.67.351

17. Chen D.X., Pardo E., Sanchez A. Demagnetizing factors of rectangular prisms and ellipsoids. IEEE Trans. Magn. 2002;38(4):1742–1752. https://doi.org/10.1109/TMAG.2002.1017766

18. Malkinski L.M., Yu M., Scherer II D.J. Magnetostatic interactions in two-dimensional arrays of magnetic strips. Mater. Res. Symp. Proc. 2010;1250:G08–03. https://doi.org/10.1557/PROC-1250-G08-03

19. Encinas-Oropesa A., Demand M., Piraux L., Huynen I., Ebels U. Dipolar interaction in arrays of nickel nanowires studied by ferromagnetic resonance. Phys. Rev. B. 2001;63(10):104415. https://doi.org/10.1103/PhysRevB.63.104415

20. Tartakovskaya E.V., Vovk A., Golub V. Dipolar interaction in ordered superlattices of ferromagnetic nanoparticles. Phys. Stat. Sol. A. 2008;205(8):1787–1789. https://doi.org/10.1002/pssa.200723610

21. Zhai J., Dong S., Xing Z., Li J., Viehland D. Geomagnetic sensor based on giant magnetoelectric effect. Appl. Phys. Lett. 2007;91(12):125513. https://doi.org/10.1063/1.2789391

22. Duc N.H., Tu B.D., Ngoc N.T., Lap V.D., Giang T.H. Metglas/PZT-magnetoelectric 2-D geomagnetic device for computing precise angular position. IEEE Trans. Magn. 2013;49(8):4839–4842. https://doi.org/10.1109/TMAG.2013.2241446


Supplementary files

1. Dependence of the voltage u0 for a periodic Ni–PZT structure with T = 100 μm on the orientation angle φ of the field H in the plane. Points—experiment, solid line—calculation Points—experiment, solid line—calculation
Subject
Type Исследовательские инструменты
View (170KB)    
Indexing metadata ▾
  • The strip and periodic heterostructures based on nickel–lead zirconate titanate bilayers were fabricated.
  • A decrease in the stripe size led to a decrease in the magnetoelectric conversion efficiency.
  • Anisotropy of the magnetoelectric effects in periodic magnetoelectric heterostructures could be used to develop magnetic field sensors sensitive to field orientation.

Review

For citations:


Fedulov F.A., Saveliev D.V., Chashin D.V., Shishkin V.I., Fetisov Yu.K. Magnetoelectric effects in stripe- and periodic heterostructures based on nickel–lead zirconate titanate bilayers. Russian Technological Journal. 2022;10(3):64-73. https://doi.org/10.32362/2500-316X-2022-10-3-64-73

Views: 632


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)