Preview

Russian Technological Journal

Advanced search

Modeling of two-dimensional MoxW1−xS2ySe2(1−y) alloy band structure

https://doi.org/10.32362/2500-316X-2022-10-3-56-63

Abstract

Objectives. Two-dimensional transition metal dichalcogenides (TMDs) are utilized for various optical applications due to the presence in these materials of a direct band gap corresponding to the visible and near-infrared spectral regions. However, a limited set of existing TMDs makes the region of the used spectral range discrete. The most effective way to solve this problem is to use two-dimensional TMD films based on multicomponent alloys, including three or more different chemical elements (while TMDs consist of two). By varying their morphological composition, one can control the value of the band gap and thus their optical absorption spectrum. However, since the band gap in such structures is highly nonlinear as far as their chemical composition is concerned, it can be challenging to select the required concentration in order to achieve uniform absorption. In this regard, the purpose of this work is to theoretically determine the dependence of the band gap of four-component two-dimensional MoxW1–xS2ySe2(1–y) alloys on their morphological composition.

Methods. The calculations were performed within the framework of the density functional theory using the Quantum Espresso software package. Flakes of two-dimensional TMDs alloys were prepared from bulk TMDs crystals by mechanical exfoliation on a Si/SiO2 substrate. An experimental study of the photoluminescence characteristics was carried out using photoluminescence microscopy-spectroscopy. Results. In this work, the dependence of the band gap on the morphological composition of two-dimensional MoxW1–xS2ySe2(1–y) alloys was determined. Upon varying the composition of TMDs alloys, it was found that the band gap changes from 1.43 to 1.83 eV. The obtained theoretical results are in qualitative agreement with the experimental data.

Conclusions. The minimum band gap is observed in alloys close to MoSe2, while alloys close to WS2 have the maximum band gap value.

About the Authors

N. Yu. Pimenov
MIREA – Russian Technological University
Russian Federation

Nikita Yu. Pimenov - Postgraduate Student, Department of Nanoelectronics, Institute for Advanced Technologies and Industrial Programming.

78, Vernadskogo pr., Moscow, 119454. ResearcherID ABB-2465-2021


Competing Interests:

not



S. D. Lavrov
MIREA – Russian Technological University
Russian Federation

Sergey D. Lavrov - Cand. Sci. (Phys.-Math.), Associate Professor, Senior Researcher, Department of Nanoelectronics, Institute for Advanced Technologies and Industrial Programming.

78, Vernadskogo pr., Moscow, 119454. Scopus Author ID 55453548100, ResearcherID G-2912-2016


Competing Interests:

not



A. V. Kudryavtsev
MIREA – Russian Technological University
Russian Federation

Andrey V. Kudryavtsev - Cand. Sci. (Phys.-Math.), Associate Professor, Researcher, Department of Nanoelectronics, Institute for Advanced Technologies and Industrial Programming.

78, Vernadskogo pr., Moscow, 119454. Scopus Author ID 55219889700, ResearcherID O-1457-2016


Competing Interests:

not



A. Yu. Avdizhiyan
MIREA – Russian Technological University
Russian Federation

Artur Yu. Avdizhiyan - Cand. Sci. (Phys.-Math.), Junior Researcher, Department of Nanoelectronics, Institute for Advanced Technologies and Industrial Programming.

78, Vernadskogo pr., Moscow, 119454. Scopus Author ID 57200646355, ResearcherID C-2190-2018


Competing Interests:

not



References

1. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–669. https://doi.org/10.1126/science.1102896

2. Chernozatonskii L.A., Artyukh A.A. Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties, and applications. Phys.-Usp. 2018;61(1):2–28. https://doi.org/10.3367/UFNe.2017.02.038065

3. Yun W.S., Han S.W., Hong S.C., Kim I.G., Lee J.D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B. 2012;85(3):033305. https://doi.org/10.1103/PhysRevB.85.033305

4. Huo N., Yang Y., Wu Y.-N., Zhang X.-G., Pantelides S.T., Konstantatos G. High carrier mobility in monolayer CVD-grown MoS2 through phonon suppression Nanoscale. 2018;10(31):15071–15077. https://doi.org/10.1039/C8NR04416C

5. Taffelli A., Dirè S., Quaranta A., Pancheri L. MoS2 based photodetectors: a review. Sensors. 2021;21(8):2758. https://doi.org/10.3390/s21082758

6. Shin G. H., Park C., Lee H.J., Jin H.J., Choi S.-Y. Ultrasensitive phototransistor based on WSe2-MoS2 van der Waals heterojunction. Nano Lett. 2020;20(8): 5741–5748. https://doi.org/10.1021/acs.nanolett.0c01460

7. Wang T., Zheng F., Tang G., Cao J., You P., Zhao J., Yan F. 2D WSe2 flakes for synergistic modulation of grain growth and charge transfer in tin-based perovskite solar cells. Adv. Sci. 2021;8(11):2004315. https://doi.org/10.1002/advs.202004315

8. Choi W., Choudhary N., Han G.H., Park J., Akinwande D., Lee Y.H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today. 2017;20(3):116–130. https://doi.org/10.1016/j.mattod.2016.10.002

9. Su S.-H., Hsu W.-T., Hsu C.-L., Chen C.-H., Chiu M.-H., Lin Y.-C., Chang W.-H., Suenaga K., He J.-H., Li L.-J. Controllable synthesis of band-gaptunable and monolayer transition-metal dichalcogenide alloys. Front. Energy Res. 2014;2:27. https://doi.org/10.3389/fenrg.2014.00027

10. Li M.-Y., Chen C.-H., Shi Y., Li L.-J. Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today. 2016;19(6): 322–335. https://doi.org/10.1016/j.mattod.2015.11.003

11. Petrić M.M., Kremser M., Barbone M., Qin Y., Sayyad Y., Shen Y., Tongay S., Finley J.J., Botello-Méndez A.R., Müller K. Raman spectrum of Janus transition metal dichalcogenide monolayers WSSe and MoSSe. Phys. Rev. B. 2021;103(3):035414. https://doi.org/10.1103/PhysRevB.103.035414

12. Ernandes C., Khalil L., Almabrouk H., Pierucci D., Zheng B., Avila J., Dudin P., Chaste J., Oehler F., Pala M., Bisti F., Brulé T., Lhuillier E., Pan A., Ouerghi A. Indirect to direct band gap crossover in two-dimensional WS2(1−x)Se2x alloys. npj 2D Mater. Appl. 2021;5(1):7. https://doi.org/10.1038/s41699-020-00187-9

13. Wang Z., Sun J., Wang H., Lei Y., Xie Y., Wang G., Zhao Y., Li X., Xu H., Yang X., Feng L., Ma X. 2H/1T′ phase WS2(1−x)Te2x alloys grown by chemical vapor deposition with tunable band structures. Appl. Surf. Sci. 2020;504:144371. https://doi.org/10.1016/j.apsusc.2019.144371

14. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77(18):3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

15. Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Chiarotti G.L., Cococcioni M., Dabo I., Corso A.D., Gironcoli S., Fabris S., Fratesi G., Gebauer R., Gerstmann U., Gougoussis C., Kokalj A., Lazzeri M., Martin-Samos L., Marzari N., Mauri F., Mazzarello R., Paolini S., Pasquarello A., Paulatto L., Sbraccia C., Scandolo S., Sclauzero G., Seitsonen A.P., Smogunov A., Umari P., Wentzcovitch R.M. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 2009;21(39):395502. https://doi.org/10.1088/0953-8984/21/39/395502

16. Monkhorst H.J., Pack J.D. Special points for Brillouinzone integrations. Phys. Rev. B. 1976;13(12):5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

17. Li S.-L., Miyazaki H., Song H., Kuramochi H., Nakaharai S., Tsukagoshi K. Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. ACS Nano. 2012;6(8):7381–7388. https://doi.org/10.1021/nn3025173

18. Zhuang H.L., Henning R.G. Computational search for single-layer transition-metal dichalcogenide photocatalysts. J. Phys. Chem. C. 2013;117(40):20440–20445. https://doi.org/10.1021/jp405808a

19. Huang J., Wang W., Fu Q., Yang L., Zhang K., Zhang J., Xiang B. Stable electrical performance observed in large-scale monolayer WSe2(1-x)S2x with tunable band gap. Nanotechnology. 2016;27(13):13LT01. https://doi.org/10.1088/0957-4484/27/13/13LT01


Supplementary files

1. Structure of the 2 × 2 MoxW1−xS2ySe2(1−y) supercell
Subject
Type Исследовательские инструменты
View (103KB)    
Indexing metadata ▾
  • The dependence of the band gap on the morphological composition of two-dimensional MoxW1−xS2ySe2(1−y) alloys was determined.
  • Upon varying the composition of TMDs alloys, it was found that the band gap changes from 1.43 to 1.83 eV.
  • The minimum band gap is observed in alloys close to MoSe2, while alloys close to WS2 have the maximum band gap value.

Review

For citations:


Pimenov N.Yu., Lavrov S.D., Kudryavtsev A.V., Avdizhiyan A.Yu. Modeling of two-dimensional MoxW1−xS2ySe2(1−y) alloy band structure. Russian Technological Journal. 2022;10(3):56-63. https://doi.org/10.32362/2500-316X-2022-10-3-56-63

Views: 782


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)