Preview

Russian Technological Journal

Advanced search

High-temperature terahertz quantum-cascade lasers: design optimization and experimental results

https://doi.org/10.32362/2500-316X-2022-10-3-45-55

Abstract

Objectives. Terahertz quantum-cascade lasers (THz QCLs) are compact solid-state lasers pumped by electrical injection to generate radiation in the range from 1.2 to 5.4 THz. The THz QCL operating frequency band contains absorption lines for a number of substances that are suitable for biomedical and environmental applications. In order to reduce the size and cost of THz QCLs and simplify the use of THz sources in these applications, it is necessary to increase the operating temperature of lasers.

Methods. To calculate electron transport in THz QCLs, we used a system of balance equations based on wave functions with reduced dipole moments of tunnel-bound states.

Results. As a result of the calculations, an original band design with a period based on three GaAs/Al0.18Ga0.82As quantum wells (QWs) and a gain maximum at about 3.3 THz was proposed. Based on the developed design, a THz QCL was fabricated, including the growth of a laser structure by molecular beam epitaxy, postgrowth processing to form strip lasers with a double metal waveguide, as well as an assembly of lasers mounted on a heat sink. The developed THz QCLs was capable of lasing at temperatures of up to 125 K as predicted by the performed calculations. We also studied band designs based on two GaAs/AlxGa1–xAs QWs having varying aluminum contents in the barrier layers (x = 0.20, 0.25, and 0.30).

Conclusions. The calculated temperature dependences of the peak gain for two-QW designs with x > 0.2 confirm the possibility of creating THz QCLs operating at temperatures above 200 K. Thus, we have proposed two-QW band designs that outperform existing high-temperature designs in terms of maximum operating temperature.

About the Authors

D. V. Ushakov
Belarusian State University
Belarus

Dmitrii V. Ushakov - Cand. Sci. (Phys.-Math.), Associate Professor, Dean of the Faculty of Radiophysics and Computer Technologies.

4, Nezavisimosti pr., Minsk, 220030. Scopus Author ID 6701760232, ResearcherID K-4878-2013


Competing Interests:

not



A. A. Afonenko
Belarusian State University
Belarus

Alexander A. Afonenko - Dr. Sci. (Phys.-Math.), Associate Professor, Head of the Department of Quantum Radiophysics and Optoelectronics.

4, Nezavisimosti pr., Minsk, 220030. Scopus Author ID 6603664811


Competing Interests:

not



I. A. Glinskiy
Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences
Russian Federation

Igor A. Glinskiy - Junior Researcher.

7/5, Nagorny pr., Moscow, 117105. Scopus Author ID 57190616854, ResearcherID I-4334-2015


Competing Interests:

not



R. A. Khabibullin
Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences; Ioffe Institute
Russian Federation

Rustam A. Khabibullin - Cand. Sci. (Phys.-Math.), Associate Professor, Leading Researcher, V.G. Mokerov Institute of UHFSE, RAS, Leading Researcher, Ioffe Institute, Scopus Author ID 55018400000, ResearcherID B-6594-2012

, https://orcid. org/0000-0002-8414-7653


Competing Interests:

not



References

1. Sampaolo A., Yu C., Wei T., Zifarelli A., Giglio M., Patimisco P., Zhu H., Zhu H., He L., Wu H., Dong L., Xu G., Spagnolo V. H2S quartz-enhanced photoacoustic spectroscopy sensor employing a liquid-nitrogen-cooled THz quantum cascade laser operating in pulsed mode. Photoacoustics. 2021;21:100219. https://doi.org/10.1016/j.pacs.2020.100219

2. Consolino L., Nafa M., De Regis M., Cappelli F., Garrasi K., Mezzapesa F.P., Li L., Davies A.G., Linfield E.H., Vitiello M.S., Bartalini S., De Natale P. Quantum cascade laser based hybrid dual comb spectrometer. Commun. Phys. 2020;3(1):69. https://doi.org/10.1038/s42005-020-0344-0

3. Irimajiri Y., Morohashi I., Kawakami A. Multifrequency heterodyne detection of molecules using a hot electron bolometer mixer pumped by two phase-locked THz-quantum cascade lasers. IEEE Trans. Terahertz Sci. Technol. 2020;10(5):474–479. https://doi.org/10.1109/TTHZ.2020.2990358

4. Jin Y., Reno J.L., Kumar S. Phase-locked terahertz plasmonic laser array with 2 W output power in a single spectral mode. Optica. 2020;7(6):708–715. https://doi.org/10.1364/OPTICA.390852

5. Rakić A.D., Taimre T., Bertling K., Lim Y.L., Dean P., Valavanis A., Indjin D. Sensing and imaging using laser feedback interferometry with quantum cascade lasers. Appl. Phys. Rev. 2019;6(2):021320. https://doi.org/10.1063/1.5094674

6. Dunn A., Poyser C., Dean P., Demić A., Valavanis A., Indjin D., Salih M., Kundu I., Li L., Akimov A., Davies A.G., Linfield E., Cunningham J., Kent A. High-speed modulation of a terahertz quantum cascade laser by coherent acoustic phonon pulses. Nat. Commun. 2020;11:835. https://doi.org/10.1038/s41467020-14662-w

7. Hagelschuer T., Richter H., Wienold M., Lü X., Röben B., Schrottke L., Biermann K., Grahn H., Hübers H. A сompact 4.75-THz source based on a quantum-cascade laser with a back-facet mirror. IEEE Trans. Terahertz Sci. Technol. 2019;9(6):606–612. https://doi.org/10.1109/TTHZ.2019.2935337

8. Schrottke L., Ropcke J., Grahn H.T., Lu X., Röben B., Drude P., Biermann K., Hagelschuer T., Wienold M., Hübers H.-W., Hannemann M., Hubertus van Helden J.-P. High-performance GaAs/AlAs terahertz quantumcascade lasers for spectroscopic applications. IEEE Trans. Terahertz Sci. Technol. 2020;10(2):133–140. https://doi.org/10.1109/TTHZ.2019.2957456

9. Franckié M., Bosco L., Beck M., Bonzon C., Mavrona E., Scalari G., Wacker A., Faist J. Two-well quantum cascade laser optimization by non-equilibrium Green’s function modelling. Appl. Phys. Lett. 2018;112:021104. https://doi.org/10.1063/1.5004640

10. Bosco L., Franckié M., Scalari G., Beck M., Wacker A., Faist J. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K. Appl. Phys. Lett. 20194;115:010601. https://doi.org/10.1063/1.5110305

11. Khalatpour A., Paulsen A.K., Deimert C., Wasilewski Z.R., Hu Q. High-power portable terahertz laser systems. Nat. Photonics. 2021;15:16–20. https://doi.org/10.1038/s41566-020-00707-5

12. Kainz M.A., Schönhuber S., Andrews A.M., Detz H., Limbacher B., Strasser G., Unterrainer K. Barrier height tuning of THz quantum cascade lasers for high temperature operation. ACS Photonics. 2018;5(11): 4687–4693. https://doi.org/10.1021/acsphotonics.8b01280

13. Yachmenev A.E., Pushkarev S.S., Reznik R., Khabibullin R.A., Ponomarev D.S. Arsenides-and related III-V materials-based multilayered structures for terahertz applications: various designs and growth technology. Prog. Cryst. Growth Charact. Mater. 2020;66(2):100485. https://doi.org/10.1016/j.pcrysgrow.2020.100485

14. Khabibullin R.A., Shchavruk N.V., Pavlov A.Yu., Ponomarev D.S., Tomosh K.N., Galiev R.R., Maltsev P.P., Zhukov A.E., Cirlin G.E., Zubov F.I., Alferov Z.I. Fabrication of terahertz quantum cascade laser with a double metal waveguide based on multilayer GaAs/AlGaAs heterostructures. Semiconductors. 2016;50(10):1377–1382. https://doi.org/10.1134/S1063782616100134 [Original Russian Text: Khabibullin R.A., Shchavruk N.V., Pavlov A.Yu., Ponomarev D.S., Tomosh K.N., Galiev R.R., Maltsev P.P., Zhukov A.E., Cirlin G.E., Zubov F.I., Alferov Z.I. Fabrication of terahertz quantum cascade laser with a double metal waveguide based on multilayer GaAs/AlGaAs heterostructures. Fizika i Tekhnika Poluprovodnikov. 2016;50(10):1395–1400 (in Russ.).]

15. Ikonnikov A.V., Maremyanin K.V., Morozov S.V., Gavrilenko V.I., Pavlov A.Yu., Shchavruk N.V., Khabibullin R.A., Reznik R.R., Cirlin G.E., Zubov F.I., Zhukov A.E., Alferov Zh.I. Generation of terahertz radiation in multilayer quantum-cascade heterostructures. Tech. Phys. Lett. 2017;43(7):362–365. https://doi.org/10.1134/S1063785017040083 [Original Russian Text: Ikonnikov A.V., Maremyanin K.V., Morozov S.V., Gavrilenko V.I., Pavlov A.Yu., Shchavruk N.V., Khabibullin R.A., Reznik R.R., Cirlin G.E., Zubov F.I., Zhukov A.E., Alferov Zh.I. Generation of terahertz radiation in multilayer quantum-cascade heterostructures. Pis’ma v Zhurnal Tekhnicheskoi Fiziki. 2017;43(7):86–94 (in Russ.). https://doi.org/10.21883/PJTF.2017.07.44473.16602]

16. Ushakov D.V., Afonenko A.A., Dubinov A.A., Gavrilenko V.I., Vasil’evskii I.S., Shchavruk N.V., Ponomarev D.S., Khabibullin R.A. Mode loss spectra in THz quantum-cascade lasers with gold- and silver-based double metal waveguides. Quantum Electronics. 2018;48(11):1005–1008. https://doi.org/10.1070/QEL16806

17. Ushakov D.V., Afonenko A.A., Dubinov A.A., Gavrilenko V.I., Volkov O.Yu., Shchavruk N.V., Ponomarev D.S., Khabibullin R.A. Balance-equation method for simulating terahertz quantum-cascade lasers using a wave-function basis with reduced dipole moments of tunnel-coupled states. Quantum Electronics. 2019;49(10):913–918. https://doi.org/10.1070/QEL17068

18. Khabibullin R.A., Shchavruk N.V., Ponomarev D.S., Ushakov D.V., Afonenko A.A., Vasil’evskii I.S., Zaycev A.A., Danilov A.I., Volkov O.Y., Pavlovskiy V.V., Maremyanin K.V., Gavrilenko V.I. Temperature dependences of the threshold current and output power of a quantum-cascade laser emitting at 3.3 THz. Semiconductors. 2018;52(11):1380–1385. https://doi.org/10.1134/S1063782618110118 [Original Russian Text: Khabibullin R.A., Shchavruk N.V., Ponomarev D.S., Ushakov D.V., Afonenko A.A., Vasil’evskii I.S., Zaycev A.A., Danilov A.I., Volkov O.Y., Pavlovskiy V.V., Maremyanin K.V., Gavrilenko V.I. Temperature dependences of the threshold current and output power of a quantum-cascade laser emitting at 3.3 THz. Fizika i Tekhnika Poluprovodnikov. 2018;52(11):1268–1273 (in Russ.). https://doi.org/10.21883/FTP.2018.11.46581.03]

19. Khabibullin R.A., Shchavruk N.V., Ponomarev D.S., Ushakov D.V., Afonenko A.A., Maremyanin K.V., Volkov O.Yu., Pavlovskiy V.V., Dubinov A.A. The operation of THz quantum cascade laser in the region of negative differential resistance. Opto-Electronics Review. 2019;27(4):329. https://doi.org/10.1016/j.opelre.2019.11.002

20. Dolgov A.K., Ponomarev D.S., Khabibullin R.A., Ushakov D.V., Afonenko A.A., Dyuzhikov I.N., Glinskiy I.A. Simulation on the nonuniform electrical pumping efficiency of THz quantum-cascade lasers. Quantum Electronics. 2021;51(2):164–168. https://doi.org/10.1070/QEL17431

21. Khabibullin R., Ushakov D., Afonenko A., Shchavruk N., Ponomarev D., Vasil’evskii I., Safonov D., Dubinov A. Spectra of mode loss in THz quantum cascade laser with double metal waveguide based on Au, Cu and Ag. Proc. SPIE. 2018;11066:1106613. https://doi.org/10.1117/12.2523284

22. Khabibullin R., Ushakov D., Afonenko A., Shchavruk N., Ponomarev D., Volkov O., Pavlovskiy V., Vasil’evskii I., Safonov D., Dubinov A. Silver-based double metal waveguide for terahertz quantum cascade laser. Proc. SPIE. 2019;11022:1102204. https://doi.org/10.1117/12.2521774

23. Khabibullin R.A., Shchavruk N.V., Klochkov A.N., Glinskiy I.A., Zenchenko N.V., Ponomarev D.S., Maltsev P.P., Zaycev A.A., Zubov F.I., Zhukov A.E., Cirlin G.E., Alferov Zh.I. Energy spectrum and thermal properties of terahertz quantum-cascade laser based on the resonant-phonon depopulation scheme. Semiconductors. 2017;51(4):514–519. https://doi.org/10.1134/S106378261704008X [Original Russian Text: Khabibullin R.A., Shchavruk N.V., Klochkov A.N., Glinskiy I.A., Zenchenko N.V., Ponomarev D.S., Maltsev P.P., Zaycev A.A., Zubov F.I., Zhukov A.E., Cirlin G.E., Alferov Zh.I. Energy spectrum and thermal properties of terahertz quantum-cascade laser based on the resonant-phonon depopulation scheme. Fizika i Tekhnika Poluprovodnikov. 2017;51(4):540–546 (in Russ.). https://doi.org/10.21883/FTP.2017.04.44349.8414]

24. Cirlin G.E., Reznik R.R., Zhykov A.E., Khabibullin R.A., Marem’yanin K.V., Gavrilenko V.I., Morozov S.V. Specific growth features of nanostructures for terahertz quantum cascade lasers and their physical properties. Semiconductors. 2020;54:1092–1095. http://dx.doi.org/10.1134/S1063782620090298 [Original Russian Text: Cirlin G.E., Reznik R.R., Zhykov A.E., Khabibullin R.A., Marem’yanin K.V., Gavrilenko V.I., Morozov S.V. Specific growth features of nanostructures for terahertz quantum cascade lasers and their physical properties. Fizika i Tekhnika Poluprovodnikov. 2020;54(9):902–905 (in Russ.). https://doi.org/10.21883/FTP.2020.09.49829.21]

25. Ushakov D., Afonenko A., Khabibullin R., Ponomarev D., Aleshkin V., Morozov S., Dubinov A. HgCdTe-based quantum cascade lasers operating in the GaAs phonon Reststrahlen band predicted by the balance equation method. Opt. Express. 2020;28(17):25371–25382. https://doi.org/10.1364/oe.398552


Supplementary files

1. Energy profile of the bottom of the conduction band Ec; energy levels (numbered) and basis wave functions after the localization procedure (tight coupling model) for two successive active modules at voltage V1 = 51 mV and temperature 77 K
Subject
Type Исследовательские инструменты
View (52KB)    
Indexing metadata ▾
  • The key results obtained during the development of high-temperature terahertz quantum-cascade lasers (THz QCLs) are presented. Based on the original method for calculating the band design, new laser schemes of THz QCLs were proposed. This allows the operating temperatures of fabricated THz QCLs to be increased up to 120 K.
  • Verification of the calculation method on the basis of experimental data made it possible to optimize the height of potential barriers in the studied structures. It was shown theoretically that the creation THz QCLs with operating temperatures above 200 K (about 73°C) is possible based on the GaAs/AlGaAs heterosystem with an increased aluminum content in the barrier layers.

Review

For citations:


Ushakov D.V., Afonenko A.A., Glinskiy I.A., Khabibullin R.A. High-temperature terahertz quantum-cascade lasers: design optimization and experimental results. Russian Technological Journal. 2022;10(3):45-55. https://doi.org/10.32362/2500-316X-2022-10-3-45-55

Views: 649


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)