Preview

Russian Technological Journal

Advanced search

Solution of topical spectroradiometric problems using synchrotron radiation

https://doi.org/10.32362/2500-316X-2022-10-3-34-44

Abstract

Objectives. In order to solve fundamental metrological problems concerning the reproduction and transmission of spectral radiometry units, as well as developing methods and tools for metrological support of modern technologies such as nanophotolithography in the electronics industry, synchrotron radiation can be used. When developing solid-state sources and receivers of radiation, new topical problems arise in connection with the metrological characteristics of light-emitting diodes (LEDs), multi-element array receivers, charge-coupled device (CCD) cameras and telescopes, whose successful solution depends on the properties of a reference source of synchrotron radiation. Therefore, the purpose of the present work is to develop spectral radiometry methods for obtaining metrological channels using an electron storage ring in order to control the characteristics of electronics components, as well as for studying and calibrating radiometers, photometers, and emitters operating in the visible, ultraviolet and infrared regions of the electromagnetic spectrum.

Methods. Methods for transmitting spectroradiometric units on an electron storage ring are based on the classical theory of Julian Schwinger, which describes the electromagnetic radiation of a relativistic electron to calculate the spectral and energetic synchrotron radiation characteristics taking polarization components into account.

Results. The possibility of developing methods for transmitting spectral radiometric units using synchrotron radiation was evaluated by means of a test setup, which included a monochromator-based comparator, a telescope with a CCD array, a spectroradiometer, a radiometer, a photometer, a goniometer, and an integrating sphere. This allowed the full set of spectroradiometric and photometric characteristics of radiation sources and receivers to be measured: from the most differential distribution of the spectral radiance density of the emitting region to the integral radiation flux. The results were compared with the reference synchrotron radiation source.

Conclusions. Among possible approaches for determining the metrological characteristics of LED emitters, multielement array receivers, CCD cameras, and telescopes, synchrotron radiation seems to be the most promising. This approach allows the small size of the emitting region of synchrotron radiation, the Gaussian distribution of radiance over the emitting region of the synchrotron electron bunch, as well as the wide dynamic range of spectrum tuning due to changes in the energy and number of accelerated electrons, to be taken into account.

About the Authors

A. S. Sigov
https://www.researchgate.net/profile/A_Sigov
MIREA – Russian Technological University
Russian Federation

Alexander S. Sigov - Academician at the Russian Academy of Sciences, Dr. Sci. (Phys.–Math.), Professor, President.

78, Vernadskogo pr., Moscow, 119454. Scopus Author ID 35557510600, ResearcherID L-4103-2017


Competing Interests:

not



N. B. Golovanova
MIREA – Russian Technological University
Russian Federation

Nataliya B. Golovanova - Dr. Sci. (Econ.), Professor, Deputy First Vice-Rector.

78, Vernadskogo pr., Moscow, 119454. Scopus Author ID 57191447039


Competing Interests:

not



O. A. Minaeva
MIREA – Russian Technological University
Russian Federation

Olga A. Minaeva - Dr. Sci. (Eng.), Head of the Department of Metrology and Standardization, Institute for Advanced Technologies and Industrial Programming.

78, Vernadskogo pr., Moscow, 119454. Scopus Author ID 6603019847


Competing Interests:

not



S. I. Anevsky
MIREA – Russian Technological University
Russian Federation

Sergei I. Anevsky - Dr. Sci. (Eng.), Professor, Department of Metrology and Standardization, Institute for Advanced Technologies and Industrial Programming.

78, Vernadskogo pr., Moscow, 119454


Competing Interests:

not



R. V. Shamin
MIREA – Russian Technological University
Russian Federation

Roman V. Shamin - Dr. Sci. (Phys.-Math.), Director, Institute for Advanced Technologies and Industrial Programming.

78, Vernadskogo pr., Moscow, 119454. Scopus Author ID 6506250832


Competing Interests:

not



O. I. Ostanina
MIREA – Russian Technological University
Russian Federation

Olga I. Ostanina - Cand. Sci. (Chem.), Assistant Professor, Department of Metrology and Standardization, Institute for Advanced Technologies and Industrial Programming.

78, Vernadskogo pr., Moscow, 119454. Scopus Author ID 9249650700


Competing Interests:

not



References

1. Richter M., Ulm G. Metrology with Synchrotron Radiation. In: Jaeschke E., Khan S., Schneider J.R., Hastings J.B. (Eds.). Synchrotron Light Sources and Free-Electron Lasers. Springer; 2020. P. 1–35. https://doi.org/10.1007/978-3-319-04507-8_63-1

2. Li H., Li B., Wang S., Li Z., Qi J., Yu M., Huang Y., Li Y., Barboutis A., Lubeck J., Klein R., Kroth S., Paustian W., Ressin M., Thornagel R. Research on the irradiance calibration of a VUV dual-grating spectrometer based on synchrotron radiation. Opt. Commun. 2020;475:126254. https://doi.org/10.1016/j.optcom.2020.126254

3. Hurdax P., Hollerer M., Egger L., Koller G., Yang X., Haags A., Soubatch S., Tautz F.S., Richter M., Gottwald A., Puschnig P., Sterrer M., Ramsey M.G. Controlling the electronic and physical coupling on dielectric thin films. Beilstein J. Nanotechnol. 2020;11:1492–1503. https://doi.org/10.3762/bjnano.11.132

4. Chkhalo N.I., Gusev S.A., Nechay A.N., Pariev D.E., Polkovnikov V.N., Salashchenko N.N., et al. Highreflection Mo/Be/Si multilayers for EUV lithography. Optic. Lett. 2017;42(24):5070–5073. https://doi.org/10.1364/ol.42.005070

5. Steiger A., Kehrt M., Deninger A. A reference material for accurate THz measurements. In: 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). 2018:8510011. https://doi.org/10.1109/IRMMW-THz.2018.8510011

6. Sperling A., Meyer M., Pendsa S., Jordan W., Revtova E., Poikonen T., Renaux D., Blattner P. Multiple Transfer Standard for calibration and characterization of the setups for LED lamps and luminaires in industry. Metrologia. 2018;55(2):S37–S42. https://doi.org/10.1088/1681-7575/aaa173

7. Sigov A.S., Minaeva O.A., Anevsky S.I., Lebedev A.M., Minaev R.V. Metrological studies of the characteristics of multilayer surface coatings using synchrotron radiation. Rossiiskii tekhnologicheskii zhurnal = Russian Technological Journal. 2021;9(1):38–47 (in Russ.). https://doi.org/10.32362/2500-316X-2021-9-1-38-47

8. Schneider P., Salffner K., Sperling A., Nevas S., Kröger I., Reiners T. Improved calibration strategy for luminous intensity. J. Phys.: Conf. Series. 2018;972(1):012016. https://doi.org/10.1088/1742-6596/972/1/012016

9. Klein R., Kroth S., Paustian W., Richter M., Thornagel R. PTB’s radiometric scales for UV and VUV source calibration based on synchrotron radiation. Metrologia. 2018;55(3):386. https://doi.org/10.1088/1681-7575/aab803

10. Reichel T., Gottwald A., Kroth U., Laubis C., Scholze F. Developments in calibration of EUV and VUV detectors for solar orbiter instrumentation using synchrotron radiation. In: Proc. SPIE 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 990547990547-6. https://doi.org/10.1117/12.2231405

11. Sildoja M., Nevas S., Pape S., Pendsa S., Sperfeld P., Kemus F. LED-based UV monitoring source. In: 13th International Conference on New Developments and Applications in Optical Radiometry (NEWRAD 2017), Proceedings. 2017: 92–93.

12. Schwihys J. On the classical radiation of accelerated electrons. Phys. Rev. 1949;75(12):1912–1925. https://doi.org/10.1103/PhysRev.75.1912

13. Sildoja M., Nevas S., Kouremeti N., Gröbner J., Pape S., Pendsa S., Sperfeld P., Kemus F. LED-based UV source for monitoring spectroradiometer properties. Metrologia. 2018;55(3):97–103. https://doi.org/10.1088/1681-7575/aab639

14. Schmähling F., Wuebbeler G., Krueger U., Ruggaber B., Schmidt F., Taubert R.D., Sperling A., Elster C. Uncertainty evaluation and propagation for spectral measurements. Color Reseach & Application. 2018;43(1):6–16. https://doi.org/10.1002/col.22185

15. McEvoy H.C., Martin M-J., Steiner A., Schreiber E., Girard F., Battuello M., Sadli M., Ridoux P., Gutschwager B., Hollandt J., Diril A., Pehlivan Ö. Report on the measurement results for the EURAMET 658 extension: project to examine underlying parameters in radiance scale realization. Metrologia. 2018;55(1A):03001. https://doi.org/10.1088/0026-1394/55/1A/03001

16. Zuber R., Sperfeld P., Nevas S., Sildoja M. A stray light corrected array spectroradiometer for complex high dynamic range measurements in the UV spectral range. In: 13th International Conference on New Developments and Applications in Optical Radiometry (NEWRAD 2017), Proceedings. 2017:65–66.

17. Kokka F., Poikonen T., Blattner P., Jost S., Ferrero S., Pulli T., Ngo M., Thorseth A., Gerloff T., Dekker P., Stuker F., Klej A., Ludwig K., Schneider M., Reiners T., Ikonen E. Development of LED illuminants for colorimetry and recommendation of white LED reference spectrum for photometry. Metrologia. 2018;55(4):526–534. https://doi.org/10.1088/1681-7575/aacae7

18. Ferrero A., Velázquez J.L., Pons A., Campos J. Index for the evaluation of the general photometric performance of photometers. Opt. Express. 2018;26(14):18633–18643. https://doi.org/10.1364/OE.26.018633

19. Gutschwager B., Hollandt J. Nonuniformity correction of infrared cameras by reading radiance temperatures with a spatially nonhomogeneous radiation source. Meas. Sci. Technol. 2017;28(1):015401. https://doi.org/10.1088/1361-6501/28/1/015401

20. Strothkämper C., Ferrero A., Koo A., Jaanson P., Ged G., Obein G., Källberg S., Audenaert J., Leloup F.B., Martínez-Verdú F.M., Perales E., Schirmacher A., Campos J. Multilateral spectral radiance factor scale comparison. Appl. Opt. 2017;56(7):1996–2006. https://doi.org/10.1364/ao.56.001996

21. Kokka A., Pulli T., Poikonen T., Askola J., Ikonen E. Fisheye camera method for spatial non-uniformity corrections in luminous flux measurements with integrating spheres. Metrologia. 2017;54(4):577–583. https://doi.org/10.1088/1681-7575/aa7cb7

22. Kokka A., Pulli T., Ferrero A., Dekker P., Thorseth A., Kliment P., Klej A., Gerloff T., Ludwig K., Poikonen T., Ikonen E. Validation of the fisheye camera method for spatial non-uniformity corrections in luminous flux measurements with integrating spheres. Metrologia. 2019;56(4):045002. https://doi.org/10.1088/1681-7575/ab17fe


Supplementary files

1. 3D computer diagram depicting the results of measuring the angular dependence of the LED radiation intensity
Subject
Type Исследовательские инструменты
View (36KB)    
Indexing metadata ▾
  • Special test installation was developed for the spectroradiometry methods evolution using synchrotron radiation, including comparator based on monochromator, telescope with CCD array, spectroradiometer, filter radiometer, photometer, goniometer, and integrating sphere.
  • The installation allowes a full set of spectroradiometric and photometric characteristics of radiation sources and detectors—from the most differential unit of the spectral radiance distribution of the radiating region to the integral radiation flux—to be measured.
  • The development of spectroradiometry methods on the channels of electron storage rings is aimed at control the characteristics of components in the electronics industry, the study and calibration of radiometers, photometers, sources in the visible, ultraviolet and infrared spectral regions.

Review

For citations:


Sigov A.S., Golovanova N.B., Minaeva O.A., Anevsky S.I., Shamin R.V., Ostanina O.I. Solution of topical spectroradiometric problems using synchrotron radiation. Russian Technological Journal. 2022;10(3):34-44. https://doi.org/10.32362/2500-316X-2022-10-3-34-44

Views: 489


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)