Preview

Russian Technological Journal

Advanced search

Influence of size effects and granule distribution by size on optical and magneto-optical properties of nanocomposites

https://doi.org/10.32362/2500-316X-2021-9-3-49-57

Abstract

In this paper, the spectral dependences of the transverse Kerr effect (ТКЕ) are studied experimentally and theoretically. The results are obtained for deposited and annealed samples with a corresponding variation in the size of the granules. It was found that thermomagnetic annealing leads to an increase in the ТКЕ value in magnetic nanostructures, while the most noticeable changes in the effect value were observed in the range of medium and high concentrations of the magnetic component in the visible region of the spectrum. The expediency of using the effective medium approach for calculating magneto-optical effects in granular systems, taking into account the size distribution of granules within the lognormal distribution of granules, is shown. Based on this approach, the main features of the optical and magneto-optical properties of nanocomposites are explained by the example of (Co45Fe45Zr10)X(Al2O3)1–X. All calculations are performed in the Bruggemann approximation, which effectively describes the properties of nanostructures in the region of average concentrations. Size effects are clearly manifested in nanocomposites and have a significant impact on the optical and magneto-optical properties of nanocomposites, especially in the IR region of the spectrum, which is associated with intraband transitions. Taking into account the particle size distribution makes it possible to significantly improve the description of such promising inhomogeneous nanostructures. The solved problem is very important and relevant both from the fundamental point of view – the study of magneto-optical, optical and transport phenomena in nanocomposites – and from the point of view of the great possibilities of their application in modern electronics and nanoelectronics. Taking into account the size effects and the particle size dispersion makes it possible to find new promising functional materials and control their properties in a wide spectral range.

About the Authors

A. N. Yurasov
MIREA – Russian Technological University
Russian Federation

Alexey N. Yurasov, Dr. Sci. (Phys.–Math.), Professor, Department of Nanoelectronics, Deputy Director of the Institute of Physics and Technology

ResearcherID: M-3113-2016, Scopus Author ID: 6602974416 

78, Vernadskogo pr., Moscow, 119454



M. M. Yashin
MIREA – Russian Technological University; Bauman Moscow State Technical University
Russian Federation

Maxim M. Yashin, Senior teacher, Department of Nanoelectronics, Institute of Physics and Technology; Assistant Lecturer, Department of Physics

ResearcherID: G-6809-2017, Scopus Author ID: 57191628251, 57210607470 

78, Vernadskogo pr., Moscow, 119454

5, str. 1, 2-ya Baumanskaya ul., Moscow, 105005



I. V. Gladyshev
MIREA – Russian Technological University
Russian Federation

Igor V. Gladyshev, Cand. Sci. (Phys.–Math.), Associate Professor, Department of Nanoelectronics, Institute of Physics and Technology

ResearcherID: N-1535-2016, Scopus Author ID: 6701612553 

78, Vernadskogo pr., Moscow, 119454



D. V. Semyonova
MIREA – Russian Technological University
Russian Federation

Darya V. Semyonova, Student, Department of Nanoelectronics, Institute of Physics and Technology

Scopus Author ID: 57212546857

78, Vernadskogo pr., Moscow, 119454



E. A. Gan’shina
Lomonosov Moscow State University
Russian Federation

Elena A. Gan’shina, Dr. Sci. (Phys.–Math.), Professor, Department of Magnetism, Faculty of Physics

ResearcherID: Y-9188-2018, Scopus Author ID: 55664489100

GSP-1, Leninskie Gory, Moscow, 119991



E. S. Kanazakova
MIREA – Russian Technological University
Russian Federation

Ekaterina S. Kanazakova, Student, Department of Nanoelectronics, Institute of Physics and Technology

78, Vernadskogo pr., Moscow, 119454 



References

1. Niklasson G.A., Granqvist C.G. Optical properties and solar selectivity of coevaporated Co-Al2O3 composite films. J. Appl. Phys. 1984;55(9):3382−3410. https://doi.org/10.1063/1.333386

2. Gusev A.I.Nanomaterialy, nanostruktury, nanotekhnologii (Nanomaterials, nanostructures, nanotechnologies). Moscow: Fizmatlit; 2009. 416 p. (in Russ.). ISBN 978-5-9221-0582-8

3. Gan’shina E.A., Vashuk M.V., Vinogradov A.N.,et al.Evolution of optical and magnetooptical properties of amorphous metal-dielectric nanocomposites. J. Exp. Theor. Phys. 2004;98(5):1027−1036. https://doi.org/10.1134/1.1767571 [Gan’shina E.A., Vashuk M.V., Vinogradov A.N. i dr. Evolyutsiya opticheskikh i magnitoopticheskikh svoistv nanokompozitov amorfnyi metal-dielektrik. ZhETF = J. Exp. Theor. Phys. 2004;125(5):1172−1182 (in Russ.).]

4. Yurasov A.N., Semenova D.V. Features of the equatorial Kerr effect in annealed and non-annealed nanocomposites (CoFeZr)x(Al2O3)(1–х). In: Konferentsiya «Informatika i tekhnologii. Innovatsionnye tekhnologii v promyshlennosti i informatike» (Proc. of reports of the conference «Informatics and Technologies. Innovative technologies in industry and Informatics»). Moscow: RTU MIREA; 2019. V. 1, p. 51−58 (in Russ.).

5. Yurasov A.N., Yashin M.M. The effective medium theory as a tool for analyzing the optical properties of nanocomposites. Rossiiskii tekhnologicheskii zhurnal = Russian Technological Journal. 2018;6(2):56−66 (in Russ.). https://doi.org/10.32362/2500-316X-2018-6-2-56-66

6. Landau L., Lifshits E. Teoreticheskaya fizika. T. 8. Elektrodinamika sploshnykh sred (Theoretical Physics. V. 8. Electrodynamics of continuous media). Moscow: Fizmatlit; 2017. 661 p. (in Russ.). ISBN 978-5-9221-1702-9

7. Granovsky A., Kuzmichev M., Clerc J.P. The symmetrised Maxwell-Garnett approximation for magneto-optical spectra of ferromagnetic composites. J. Magn. Soc. Japan. 1999;23(1–2):382−386. https://doi.org/10.3379/jmsjmag.23.382

8. Yashin M.M., Mirzokulov H.B. Symmetrized MaxwellGarnett approximation as an effective method for studying nanocomposites. Rossiiskii tekhnologicheskii zhurnal = Russian Technological Journal. 2019;7(4):92−100 (in Russ.). https://doi.org/10.32362/2500-316X-2019-7-4-92-100

9. Khanikaev A.B., Granovskii A.B., Clerk J.P. Influence of the size distribution granules and their attractive interaction on the percolation threshold in granulated alloys. Phys. Solid State. 2002;44(9):1611−1613. [Khanikaev A., Granovskii A., Klerk Zh.P. Vliyanie raspredeleniya granul po razmeram i prityazheniya mezhdu granulami na porog perkolyatsii v granulirovannykh splavakh. Fizika tverdogo tela = Phys. Solid State. 2002;44(9):1537−1540 (in Russ.).]

10. Yashin M.M., Yurasov A.N., Ganshina E.A., et al. Simulation of the spectra of the transverse Kerr effect of magnetic nanocomposites CoFeZr−Al2O3. Herald of the Bauman Moscow State Technical University. Series Natural Sciences. 2019;5(86):63−72. http://dx.doi.org/10.18698/1812-3368-2019-5-63-72

11. Fadeev E., Blinov M., Garshin V., Tarasova O., Ganshina E., Prudnikova M., Prudnikov V., Lahderanta E., Rylkov V., Granovskii A. Magnetic properties of (Co40Fe40B20)x(SiO2)100–x nanocomposites near the percolation threshold.Bull. RAS: Physics. 2019;83(7):835−837. https://doi.org/10.3103/S1062873819070153 [Fadeev E., Blinov M., Garshin V., Tarasova O., Gan’shina E., Prudnikova M., Prudnikov V., Lahderanta E., Ryl’kov V., Granovskii A. Magnitnye svoistva nanokompozitov (Co40Fe40B20)x(SiO2)100–x vblizi poroga perkolyatsii. Izv. AN SSSR. Seriya fizich. = Bull. RAS: Physics. 2019;83(7):917−920 (in Russ.).]

12. Domashevskaya E. P., Ivkov S. A., Sitnikov A.V., Stognei O.V., Kozakov A.T., Nikolskii A.V. The Influence of relative content of a metal component in a dielectric matrix on the formation and dimensions of cobalt nanocrystals in Cox(MgF2)100−x film composites. Phys. Solid State. 2019;61(2):71−79. https://doi.org/10.1134/S1063783419020112 [Domashevskaya E.P., Ivkov S.A., Sitnikov A.V., Stognei O.V., Kozakov A.T., Nikol’skii A.V. Vliyanie otnositel’nogo soderzhaniya metallicheskoi komponenty v dielektricheskoi matritse na obrazovanie i razmery nanokristallov kobal’ta v plenochnykh kompozitakh Co x(MgF2)100−x. Fizika tverdogo tela = Phys. Solid State. 2019;61(2):211−219 (in Russ.).]

13. Lima E., Tanaka T., Toyoda I. A novel low phase noise pushpush oscillator employing dual-feedback sub-oscillators. Progress In Electromagnetics Research M. 2018;75:141−148. http://dx.doi.org/10.2528/PIERM18080701

14. Tkacheva V.R. Nanocomposites – the future of machine building. Tekhnika. Tekhnologii. Inzheneriya = Technique. Technologies. Engineering. 2016;(1):37−40 (in Russ.).

15. Medvedeva N.V., Ipatova O.M., Ivanov Yu.D., Drozhzhin A.I., Archakov A.I. Nanobiotechnology and nanomedicine. Biochem. Moscow Suppl. Ser. B: Biomed. Chem. 2007;1:114−124. https://doi.org/10.1134/S1990750807020023 [Medvedeva N.V., Ipatova O.M., Ivanov Yu.D., Drozhzhin A.I., Archakov A.I. Nanobiotekhnologiya i nanomeditsina. Biomeditsinskaya khimiya = Biochem. Moscow Suppl. Ser. B: Biomed. Chem. 2006:52(6):529−546 (in Russ.).]


Supplementary files

1. Transverse Kerr effect spectra for annealed nanocomposite
Subject
Type Исследовательские инструменты
View (66KB)    
Indexing metadata ▾

The spectral dependences of the transverse Kerr effect are studied experimentally and theoretically. The expediency of using the effective medium approach for calculating magneto-optical effects in granular systems, taking into account the size distribution of granules within the lognormal distribution of granules, is shown. Taking into account the size effects and the particle size dispersion makes it possible to find new promising functional materials and control their properties in a wide spectral range.

Review

For citations:


Yurasov A.N., Yashin M.M., Gladyshev I.V., Semyonova D.V., Gan’shina E.A., Kanazakova E.S. Influence of size effects and granule distribution by size on optical and magneto-optical properties of nanocomposites. Russian Technological Journal. 2021;9(3):49-57. (In Russ.) https://doi.org/10.32362/2500-316X-2021-9-3-49-57

Views: 745


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)