Adaptive system for visualization of the electromagnetic scattering field of aircraft
https://doi.org/10.32362/2500-316X-2021-9-1-58-72
Abstract
The space industry has always set ambitious tasks to create unique equipment, including control equipment. Ensuring electromagnetic compatibility (EMC) of such systems is carried out at all stages of the life cycle of an aircraft (AC), starting from its development, including testing and stages of operation. Digital technology is characterized by high noise immunity. However, any modern technical system in the aggregate contains sensors, communication lines and receiving antennas sensitive to the effects of external interfering signals that propagate both through wires and over the air. Hence, the relevance of ensuring the EMC of integrated technical systems that perform the functions of measurement, data processing and the formation of control actions, both digital and analog, is obvious. The electromagnetic compatibility of a sophisticated aircraft or spaceship technical system with other systems is a prerequisite for their sustainable operation. Aerospace technology, where both highly sensitive measurements and energetic control effects are closely combined in the dense layout of an aircraft, requires a solution to the EMC problem. This paper shows the need for effective technology to control the electromagnetic radiation created in the surrounding space, both by subsystems of aircraft and by the whole object. A method for visualizing 3D electromagnetic field both in space and in time is considered.
About the Authors
Z. M. KurbanismailovRussian Federation
Kurbanismailov Zaur Magomedovich,Lecturer, Department of Intelligent Information Security Systems of the Institute for Integrated Security and Special Instrument Engineering
78, Vernadskogo pr., Moscow 119454
A. T. Tarlanov
Russian Federation
Tarlanov Arslan Tarlanovich, Lecturer, Department of Intelligent Information Security Systems of the Institute for Integrated Security and Special Instrument Engineering
78, Vernadskogo pr., Moscow 119454
E. D. Matyash
Russian Federation
Matyash Ekaterina Dmitrievna,Lecturer, Department of Computer science of the Institute for Integrated Security and Special Instrument Engineering
78, Vernadskogo pr., Moscow 119454
E. S. Karbova
Russian Federation
Karbova Elena Sergeevna, Assistant, Department of Intelligent Information Security Systems of the Institute for Integrated Security and Special Instrument Engineering
78, Vernadskogo pr., Moscow 119454
References
1. https://portal.tpu.ru/SHARED/u/ULTRATONE/uchebnaya_rabota/Tab/Lecture.pdf
2. Timirgazin R.F. Elektromagnitnaya sovmestimost': uchebnoe posobie(Electromagnetic compatibility). Ul՚yanovsk: Ulyanovsk State Technical University Publishing House; 2017. 48 p. (in Russ.). URL: http://venec.ulstu.ru/lib/disk/2017/102.pdf
3. Biuk-Aghai R.P., Pang P.C-I., Pang B. Map-like visualisations vs. treemaps: an experimental comparison. In: VINCI՚17: Proceedings of the 10th International Symposium on Visual Information Communication and Interaction. 2017. P. 113–120. https://doi.org/10.1145/3105971.3105976
4. https://studme.org/179273/matematika_himiya_fizik/elementy_metoda_setok_primery_raznostnyh_shem
5. https://wiki.org/Visualization
6. https://skomplekt.com/harakteristiki-ostcillograf/
7. Shnirman G.N. Apparaturnye nablyudeniya. Izbrannye Trudy (Hardware observations. Selected Works). Moscow: Joint Institute of Earth Physics RAS Publishing House; 2003. 304 p. (in Russ.).
8. https://rusautomation.ru/bumazhnie-registratori-samopisci
9. 7 servisov dlya vizualizatsii dannykh: ne privlekaya dizainerov i programmistov(7 services for data visualization: without involving designers and programmers) URL: https://netology.ru/blog/7-services-data-visualization
10. 20 luchshikh instrumentov dlya vizualizatsii dannykh (20 best tools for data visualization.). URL: https://freelance.today/poleznoe/20-luchshih-instrumentovdlya-vizualizacii-dannyh.html,
11. Sistemy vizualizatsii dannykh(Data visualization systems). URL: https://soware.ru/categories/data-visualization-systems
12. Detlaf A.A., Yavorskii B.M., Milkovskaya L.B. Kurs fiziki: v 3 t. T. 2. Elektrichestvo i magnetism(Physics course: in 3 v. V. 2. Electricity and magnetism). Moscow: Vysshaya shkola; 1977. 375 р. (in Russ.). ISBN 981-023917-3.
13. Kalantarov P.L., Neiman L.R. Teoreticheskie osnovy elektrotekhniki (Theoretical foundations of electrical engineering). Moscow: Gosenergoizdat; 1951. 464 р. (in Russ.).
14. Frish S.E., Timoreva A.V. Kurs obshchei fiziki: v 3 t. T. 2. Elektricheskie i elektromagnitnye yavleniya (General physics course: in 3 v. V. 2. Electrical and electromagnetic phenomena). Moscow: Lan'; 2009. 528 р. (in Russ.). ISBN 978-5-8114-0664-7.
15. Korn G., Korn T. Spravochnik po matematike: dlya nauchnykh rabotnikov i inzhenerov(Mathematical handbook: for scientists and engineers). Moscow: Nauka; 1973. 832 p. (in Russ.).
16. Trekhmernaya grafika s nulya. Chast՚ 2: rasterizatsiya (3D graphics from scratch. Part 2: rasterization). URL: https://habr.com/ru/post/342708/
17. Samarskii A.A., Gulin A.V. Chislennye metody (Numerical methods). Moscow: Nauka; 1989. 429 р. (in Russ.). ISBN 5-02-013996-3.
18. Gusev N.A., Vetoshko P.M., Kuz'michev A.N., Cheprunova D.A., Samoilova E.V., Zvezdin A.K., Korotaeva A.A. Ultra-sensitive vector magnetometer for magnetocardiographic. Biomedical Engineering.2017;51(3):157–161. https://doi.org/10.1007/s10527-017-9705-8
19. Shelagin A.V. Izmerenie elektricheskikh i magnitnykh polei: Laboratornyi praktikum(Measurement of electric and magnetic fields). Moscow: MIFI. (in Russ.).URL: https://mipt.ru/education/chair/physics/S_III/lab_el/Shelagin.pdf
20. https://www.advantech.ru/products/1-2mlkc9/pci-1716/mod_86ec4c4d-f497-45c5-81da-b8600c0eb36f
21. Raab F.H. Remote object position locater: pat. 4054881 US. Appl. № US05/680,471; Prior. 26.04.1976. Publ. 18.10.1977.
22. Raab F.H. Remote object position and orientation locater: pat. 4314251 US. Appl. № US06/062,140; Prior. 30.07.1979. Publ. 02.02.1982.
23. Egli W.H. et al. Helmet-mounted sighting system: pat. 4287809 US. 1981.
24. Zimmer P., Cordonnier A. Method and apparatus for determining an orientation associated with a mobile system, especially a line of sight inside a helmet visor. pat. 5457641 US. Appl. № US08/311,435. Prior. 29.06.1990. Publ. 10.10.1995.
Supplementary files
|
1. Visualization | |
Subject | ||
Type | Исследовательские инструменты | |
View
(10KB)
|
Indexing metadata ▾ |
This paper shows the need for effective technology to control the electromagnetic radiation created in the surrounding space, both by subsystems of aircraft and by the whole object. A method for visualizing 3D electromagnetic field both in space and in time is considered.
Review
For citations:
Kurbanismailov Z.M., Tarlanov A.T., Matyash E.D., Karbova E.S. Adaptive system for visualization of the electromagnetic scattering field of aircraft. Russian Technological Journal. 2021;9(1):58-72. (In Russ.) https://doi.org/10.32362/2500-316X-2021-9-1-58-72