Preview

Russian Technological Journal

Advanced search

Adaptive system for visualization of the electromagnetic scattering field of aircraft

https://doi.org/10.32362/2500-316X-2021-9-1-58-72

Abstract

The space industry has always set ambitious tasks to create unique equipment, including control equipment. Ensuring electromagnetic compatibility (EMC)  of  such systems is carried out at all stages of the life cycle of an aircraft (AC), starting from its development, including testing and stages of  operation. Digital technology is characterized by high noise immunity.  However, any modern technical system in the aggregate contains sensors, communication lines and receiving  antennas sensitive to the effects of external interfering signals that propagate both through wires and over the air. Hence, the relevance of ensuring the EMC of integrated technical systems that perform the functions  of  measurement, data processing and the formation of control actions, both digital and analog, is obvious. The electromagnetic compatibility of a sophisticated aircraft or spaceship technical system with other systems is a prerequisite for their sustainable operation. Aerospace technology, where both highly sensitive measurements and energetic control effects are closely combined in the dense layout of an aircraft, requires a solution to the EMC problem. This paper shows the need for effective technology to control the electromagnetic radiation created in the surrounding space, both by subsystems of aircraft and by the whole object. A method for visualizing 3D electromagnetic field both in space and in time is considered.

About the Authors

Z. M. Kurbanismailov
MIREA – Russian Technological University
Russian Federation

Kurbanismailov Zaur Magomedovich,Lecturer, Department of Intelligent Information Security Systems of the Institute for Integrated Security and Special Instrument Engineering

78, Vernadskogo pr., Moscow 119454



A. T. Tarlanov
MIREA – Russian Technological University
Russian Federation

Tarlanov Arslan Tarlanovich, Lecturer, Department of Intelligent Information Security Systems of the Institute for Integrated Security and Special Instrument Engineering

78, Vernadskogo pr., Moscow 119454



E. D. Matyash
MIREA – Russian Technological University
Russian Federation

Matyash Ekaterina Dmitrievna,Lecturer, Department of Computer science of the Institute for Integrated Security and Special Instrument Engineering

78, Vernadskogo pr., Moscow 119454



E. S. Karbova
MIREA – Russian Technological University
Russian Federation

Karbova Elena Sergeevna, Assistant, Department of Intelligent Information Security Systems of the Institute for Integrated Security and Special Instrument Engineering

78, Vernadskogo pr., Moscow 119454



References

1. https://portal.tpu.ru/SHARED/u/ULTRATONE/uchebnaya_rabota/Tab/Lecture.pdf

2. Timirgazin R.F. Elektromagnitnaya sovmestimost': uchebnoe posobie(Electromagnetic compatibility). Ul՚yanovsk: Ulyanovsk State Technical University Publishing House; 2017. 48 p. (in Russ.). URL: http://venec.ulstu.ru/lib/disk/2017/102.pdf

3. Biuk-Aghai R.P., Pang P.C-I., Pang B. Map-like visualisations vs. treemaps: an experimental comparison. In: VINCI՚17: Proceedings of the 10th International Symposium on Visual Information Communication and Interaction. 2017. P. 113–120. https://doi.org/10.1145/3105971.3105976

4. https://studme.org/179273/matematika_himiya_fizik/elementy_metoda_setok_primery_raznostnyh_shem

5. https://wiki.org/Visualization

6. https://skomplekt.com/harakteristiki-ostcillograf/

7. Shnirman G.N. Apparaturnye nablyudeniya. Izbrannye Trudy (Hardware observations. Selected Works). Moscow: Joint Institute of Earth Physics RAS Publishing House; 2003. 304 p. (in Russ.).

8. https://rusautomation.ru/bumazhnie-registratori-samopisci

9. 7 servisov dlya vizualizatsii dannykh: ne privlekaya dizainerov i programmistov(7 services for data visualization: without involving designers and programmers) URL: https://netology.ru/blog/7-services-data-visualization

10. 20 luchshikh instrumentov dlya vizualizatsii dannykh (20 best tools for data visualization.). URL: https://freelance.today/poleznoe/20-luchshih-instrumentovdlya-vizualizacii-dannyh.html,

11. Sistemy vizualizatsii dannykh(Data visualization systems). URL: https://soware.ru/categories/data-visualization-systems

12. Detlaf A.A., Yavorskii B.M., Milkovskaya L.B. Kurs fiziki: v 3 t. T. 2. Elektrichestvo i magnetism(Physics course: in 3 v. V. 2. Electricity and magnetism). Moscow: Vysshaya shkola; 1977. 375 р. (in Russ.). ISBN 981-023917-3.

13. Kalantarov P.L., Neiman L.R. Teoreticheskie osnovy elektrotekhniki (Theoretical foundations of electrical engineering). Moscow: Gosenergoizdat; 1951. 464 р. (in Russ.).

14. Frish S.E., Timoreva A.V. Kurs obshchei fiziki: v 3 t. T. 2. Elektricheskie i elektromagnitnye yavleniya (General physics course: in 3 v. V. 2. Electrical and electromagnetic phenomena). Moscow: Lan'; 2009. 528 р. (in Russ.). ISBN 978-5-8114-0664-7.

15. Korn G., Korn T. Spravochnik po matematike: dlya nauchnykh rabotnikov i inzhenerov(Mathematical handbook: for scientists and engineers). Moscow: Nauka; 1973. 832 p. (in Russ.).

16. Trekhmernaya grafika s nulya. Chast՚ 2: rasterizatsiya (3D graphics from scratch. Part 2: rasterization). URL: https://habr.com/ru/post/342708/

17. Samarskii A.A., Gulin A.V. Chislennye metody (Numerical methods). Moscow: Nauka; 1989. 429 р. (in Russ.). ISBN 5-02-013996-3.

18. Gusev N.A., Vetoshko P.M., Kuz'michev A.N., Cheprunova D.A., Samoilova E.V., Zvezdin A.K., Korotaeva A.A. Ultra-sensitive vector magnetometer for magnetocardiographic. Biomedical Engineering.2017;51(3):157–161. https://doi.org/10.1007/s10527-017-9705-8

19. Shelagin A.V. Izmerenie elektricheskikh i magnitnykh polei: Laboratornyi praktikum(Measurement of electric and magnetic fields). Moscow: MIFI. (in Russ.).URL: https://mipt.ru/education/chair/physics/S_III/lab_el/Shelagin.pdf

20. https://www.advantech.ru/products/1-2mlkc9/pci-1716/mod_86ec4c4d-f497-45c5-81da-b8600c0eb36f

21. Raab F.H. Remote object position locater: pat. 4054881 US. Appl. № US05/680,471; Prior. 26.04.1976. Publ. 18.10.1977.

22. Raab F.H. Remote object position and orientation locater: pat. 4314251 US. Appl. № US06/062,140; Prior. 30.07.1979. Publ. 02.02.1982.

23. Egli W.H. et al. Helmet-mounted sighting system: pat. 4287809 US. 1981.

24. Zimmer P., Cordonnier A. Method and apparatus for determining an orientation associated with a mobile system, especially a line of sight inside a helmet visor. pat. 5457641 US. Appl. № US08/311,435. Prior. 29.06.1990. Publ. 10.10.1995.


Supplementary files

1. Visualization
Subject
Type Исследовательские инструменты
View (10KB)    
Indexing metadata ▾

This paper shows the need for effective technology to control the electromagnetic radiation created in the surrounding space, both by subsystems of aircraft and by the whole object. A method for visualizing 3D electromagnetic field both in space and in time is considered.

Review

For citations:


Kurbanismailov Z.M., Tarlanov A.T., Matyash E.D., Karbova E.S. Adaptive system for visualization of the electromagnetic scattering field of aircraft. Russian Technological Journal. 2021;9(1):58-72. (In Russ.) https://doi.org/10.32362/2500-316X-2021-9-1-58-72

Views: 570


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)