Preview

Russian Technological Journal

Advanced search

Metrological studies of the characteristics of multilayer surface coatings using synchrotron radiation

https://doi.org/10.32362/2500-316X-2021-9-1-38-47

Abstract

The investigations of multilayer surface nanostructures characteristics was performed with synchrotron radiation sources, characterized by an intensive, calculated continuum. It plays an important role in nanoelectronics metrological base. The main research were carried out at electron storage rings «Siberia-1» (Kurchatov Institute) and MLS (PTB, Berlin) with low electron energy, in a wide wavelength range, including visible range, AUV, VU, EUV and to exclude the X-ray radiation influence. The methods of the radiometers, photodiodes, filters and multilayer mirrors characteristics measurements are based on the synchrotron  radiation  absolute spectral characteristics and accelerated electrons number variation. The metrological investigations with synchrotron radiation was concentrated on:
– absolute spectral responsivety of silicon photodiodes with multilayer filters for integral radiometers applications;
– spectral transmittances of surface layers of photodiodes in the extreme ultraviolet region;
– spectral reflectance coefficient of superlattice.
The characteristics of photodiodes and filters on a synchrotron radiation source are measured using a monochromator and a reference detector. The use of a synchrotron radiation channel makes it possible to study the spectral transmittance of thin films and multilayer structures formed in the in situ mode. To form multilayer nanostructures directly on the receiving surface of photodetectors, an ion-plasma sputtering module is used. The optical scheme of the channel provides for the possibility of using monochromators of grazing incidence for the range of photon energies from 25 to 100 ev and normal incidence for the range of photon energies from 4 to 25 ev. At a photon energy of 40 ev, the absolute spectral sensitivity was 70 ma / W for a photodiode with a surface multilayer filter applied. To develop an experimental technique for measuring the spectral reflection coefficient of multilayer mirrors, and to create standard samples, the Mo/Si  system was studied. Computer modeling of multi-layer coatings allows us to calculate the optical characteristics of superlattices in the extreme ultraviolet region. The obtained results of measurements of the spectral reflection coefficient of a multilayer coating in the photon energy range of 65–100 ev indicate a resonance reflection character with a max-imum at an energy of 83.5 ev and an energy width at a half-height of about 6.5 ev. The working wave-length of the reflecting mirror corresponds to the calculated one, which confirms the effectiveness of the adopted model.

About the Authors

A. S. Sigov
https://www.researchgate.net/profile/A_Sigov
MIREA – Russian Technological University
Russian Federation

Alexander S. Sigov,Academician of RAS, President

78, Vernadskogo pr., Moscow 119454

ResearcherID L-4103-2017; Scopus Author ID: 35557510600



O. A. Minaeva
MIREA – Russian Technological University; All-Russian Research Institute for Optical and Physical Measurements
Russian Federation

Olga A. Minaeva, Dr. Sci. (Engineering), Head of the Department of Metrology and Standardization, Institute of Physics and Technology

78, Vernadskogo pr., Moscow 119454

Head of Laboratory

46, Ozernaya ul., Moscow 119361

Scopus Author ID 6603019847



S. I. Anevsky
All-Russian Research Institute for Optical and Physical Measurements
Russian Federation

Sergei I. Anevsky,Dr. Sci. (Engineering), Head of Laboratory

46, Ozernaya ul., Moscow 119361



A. M. Lebedev
Kurchatov Institute
Russian Federation

Alexey M. Lebedev,Cand. Sci. (Phys.-Mat.), Senior Researcher

1, Akademika Kurchatova pl., Moscow 123182

Scopus Author ID 55415462900



R. V. Minaev
All-Russian Research Institute for Optical and Physical Measurements
Russian Federation

Roman V. Minaev,Cand. Sci. (Engineering), Head of Research Department

46, Ozernaya ul., Moscow 119361

Scopus Author ID 22235214600



References

1. Chkhalo N.I., Gusev S.A., Nechay A.N., Pariev D.E., Polkovnikov V.N., Salashchenko N.N., et al. High-reflection Mo/Be/Si multilayers for EUV lithography. Optic. Lett. 2017;42(240);5070–5073. https://doi.org/10.1364/OL.42.005070

2. Akhsakhalyan A.D., Kluenkov E.B., Lopatin A.Y., Luchin V.I., Nechay A.N., Pestov A.E. et al. Current status and development prospects for multilayer X-ray optics at the Institute for Physics of Microstructures Russian Academy of Sciences. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques (J SURF INVEST-X-RAY+). 2017;11(1):1–19. https://doi.org/10.1134/S1027451017010049

3. Gottwald A., Scholze F. Advanced silicon radiation detectors in the vacuum ultraviolet and the extreme ultraviolet spectral range. In: Smart sensors and MEMs. Intelligent devices and microsystems for industrial applications, 2nd edition. (Eds.). S. Nihtianov, A. Luque. 2018. P. 151–170. https://doi.org/10.1016/B978-0-08-102055-5.00007-3

4. Schwihys J. On the Classical Radiarion of Accelerated Electrons. Phys. Rev. 1949;75(12):1912–1925. https://doi.org/10.1103/PhysRev.75.1912

5. Anevsky S., Ivanov V., Kuznetsov V., Minaeva O., et al. Primary UV-radiation detector standards. Metrologia. 2003;40(1):S25–S29. https://doi.org/10.1088/0026-1394/40/1/003

6. Scholze F., Tummler J., Ulm G. High-accuracy radiometry in the EUV range at PTB soft x-ray beamline. Metrologia. 2003;40(1):S224–S228. https://doi.org/10.1088/0026-1394/40/1/352

7. Scholze F., Brandt G., Mueller P., Meyer B., Scholz F., Tummler J., Vogel K., Ulm G. High-accuracy detector calibration for EUV metrology at PTB. In: Emerging Lithographic Technologies VI. (Ed.) R.L. Engelstad. Proc. SPIE 4688. 2002. P. 680–689. https://doi.org/10.1117/12.472342

8. Gottwald A., Kroth U., Kalinina E., Zabrodskii V. Optical properties of a Cr/4H-SiC photodetector in the spectral range from ultraviolet to extreme ultraviolet. Appl. Opt. 2018;57(28):8431–8436. https://doi.org/10.1364/AO.57.008431

9. Coric M., Saxena N., Pflüger M., Müller-Buschbaum P., Krumrey M., Herzig E.M. Resonant Grazing-Incidence SmallAngle X-ray Scattering at the Sulfur K-Edge for MaterialSpecific Investigation of Thin-Film Nanostructures. J. Phys. Chem. Lett. 2018;9(11):3081–3086. https://doi.org/10.1021/acs.jpclett.8b01111

10. Gottwald A., Wiese K., Siefke T., Richter M. Validation of thin film TiO2 optical constants by reflectometry and ellipsometry in the VUV spectral range. Meas. Sci. Technol. 2019;30(4):045201. https://doi.org/10.1088/1361-6501/ab0359

11. Collon M.J., Vacanti G., Barrière N.M., Landgraf B., et al. Silicon pore optics mirror module production and testing. In: Proc. SPIE. 2019;11180:1118023. https://doi.org/10.1117/12.2535994

12. Collon M.J., Vacanti G., Barrière N.M., Landgraf B., Günther R., Vervest M., Voruz L., et al. Status of the silicon pore optics technology. In: Proc. SPIE. 2019;11119:111190L. https://doi.org/10.1117/12.2530696

13. Hönicke P., Detlefs B., Nolot E., Kayser Y., Mühle U., Pollakowski B., Beckhoff B. Reference-free grazing incidence X-ray fluorescence and reflectometry as a methodology for independent validation of X-ray reflectometry on ultrathin layer stacks and a depth-dependent characterization. J. Vac. Sci. Technol. 2019;37:041502. https://doi.org/10.1116/1.5094891

14. Nechay A.N., Chkhalo N.I., Drozdov M.N., Garakhin S.A., Pariev D.E., Polkovni-kov V.N., Salashchenko N.N., Svechnikov M.V., Vainer Y.A., Meltchakov E., Delmotte F. Study of oxidation processes in Mo/Be multilayers. AIP Advances. 2018;8(7):075202. https://doi.org/10.1063/1.5007008

15. Hönicke P., Holfelder I., Kolbe M., Lubeck J., Pollakowski B., Unterumsberger R., Weser J., Beckhoff B. Determination of SiO2 and C layers on a monocrystalline silicon sphere by reference-free x-ray fluorescence analysis. Metrologia. 2017;54(4):481–486. http://iopscience.iop.org/article/10.1088/1681-7575/aa765f/meta

16. Haase A., V. Soltwisch V., Braun S., Laubis C., Scholze F. Interface morphology of Mo/Si multilayer systems with varying Mo layer thickness studied by EUV diffuse scattering. Opt. Express. 2017;25(13):15441–15445. https://doi.org/10.1364/OE.25.015441

17. Svechnikov M., Pariev D., Nechay A., Salashchenko N., Chkhalo N., Vainer Y., Gaman D. Extended model for the reconstruction of periodic multilayers from extreme ultraviolet and X-ray reflectivity data. J. App. Crystallography. 2017;50(5):1428–1440. https://doi.org/10.1107/S1600576717012286

18. Garakhin S.A., Zabrodin I.G., Zuev S.Y., Kas’kov I.A., Lopatin A.Y., Nechay A.N., et al. Laboratory reflectometer for the investigation of optical elements in a wavelength range of 5–50 nm: description and testing results. Quantum Electron. 2017;47(4):385–392. https://doi.org/10.1070/QEL16300

19. Collon M.J., Vacanti G., Barrière N.M., Landgraf B., et al. Silicon Pore Optics Mirror Module Production and Testing. In: Proc. SPIE. 2018;10699:106990Y. https://doi.org/10.1117/12.2314479


Supplementary files

1. Reflection coefficient of the multilayer coating
Subject
Type Исследовательские инструменты
View (18KB)    
Indexing metadata ▾

The methods of the radiometers, photodiodes, filters and multilayer mirrors characteristics measurements are based on the synchrotron radiation absolute spectral characteristics and accelerated electrons number variation. Computer modeling of multi-layer coatings allows us to calculate the optical characteristics of superlattices in the extreme ultraviolet region. The obtained results of measurements of the spectral reflection coefficient of a multilayer coating in the photon energy range of 65–100 ev indicate a resonance reflection character with a max-imum at an energy of 83.5 ev and an energy width at a half-height of about 6.5 ev.

Review

For citations:


Sigov A.S., Minaeva O.A., Anevsky S.I., Lebedev A.M., Minaev R.V. Metrological studies of the characteristics of multilayer surface coatings using synchrotron radiation. Russian Technological Journal. 2021;9(1):38-47. (In Russ.) https://doi.org/10.32362/2500-316X-2021-9-1-38-47

Views: 667


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)