Preview

Russian Technological Journal

Advanced search

CALCULATION OF THE OPTICAL SECOND HARMONIC GENERATION EFFICIENCY IN THE LITHIUM NIOBATE DOMAIN STRUCTURES

https://doi.org/10.32362/2500-316X-2016-4-4-3-12

Abstract

The paper presents the experimental and theoretical study results of nonlinear optical properties of lithium niobate domain structures created by a focused electron beam. The presence of a second optical harmonic periodic signal in the locations of the domain structures is shown. The numerical simulation of the second harmonic optical power was done based on the model of Boyd. The possibility of determining the volumetric parameters of domain structures using nonlinear confocal optical microscopy is shown.

About the Author

S. D. Lavrov
Moscow Technological University
Russian Federation


References

1. Myers L.E. [et al.] Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3 // J. Opt. Soc. Am. B. 1995. V. 12, № 11. P. 2102-2116.

2. Wooten E.L. [et al.] A review of lithium niobate modulators for fiber-optic communications systems // IEEE J. Sel. Top. Quantum Electron. 2000. V. 6, № 1. P. 69-82.

3. Lucchi F. [et al.] Very low voltage single drive domain inverted LiNbO(3) integrated electro-optic modulator // Opt. Express. 2007. V. 15, № 17. P. 10739-10743.

4. Chen F. Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications // Laser Photon. Rev. 2012. V. 6, № 5. P. 622-640. Экспериментальное исследование и расчет эффективности генерации второй оптической гармоники в доменных структурах ниобата лития

5. Volk T.R. [et al.] Microdomain patterns recorded by an electron beam in he-implanted optical waveguides on X-Cut LiNbO3 crystals // J. Light. Technol. 2015. V. 33, № 23. P. 4761- 4766.

6. Uesu Y. [et al.] 3D images of inverted domain structure in LiNbO3 using SHG interference microscope // Ferroelectrics. 2004. V. 304, № 1. P. 99-103.

7. Kaneshiro J. [et al.] Three-dimensional observations of polar domain structures using a confocal second-harmonic generation interference microscope // J. Appl. Phys. 2008. V. 104, № 5. P. 1-7.

8. Stoller P. [et al.] Quantitative second-harmonic generation microscopy in collagen // Appl. Opt. 2003. V. 42, № 25. P. 5209-5219.

9. Stoller P. [et al.] Polarization-modulated second harmonic generation in collagen // Biophys. J. 2002. V. 82, № 6. P. 3330-3342.

10. Boyd R.W. Nonlinear Optics. 3rd Edition. Academic Press, 2008. 613 p.

11. Feng S., Winful H.G. Physical origin of the Gouy phase shift. // Opt. Lett. 2001. V. 26, № 8. P. 485-487.

12. Byer R.L. Nonlinear optical phenomena and materials // Annu. Rev. Mater. Sci. 1974. V. 4. P. 147-190.

13. Kleinman D.A., Ashkin A., Boyd G.D. Second-harmonic generation of light by focused laser beams // Phys. Rev. 1966. V. 145, № 1. P. 338-379.

14. Byer R.L., Herbst R.L. Parametric oscillation and mixing // Nonlinear Infrared Gener. 1977. P. 81-137.

15. Kaneshiro J., Uesu Y., Fukui T. Visibility of inverted domain structures using the second harmonic generation microscope: Comparison of interference and non-interference cases // J. Opt. Soc. Am. B. 2010. V. 27, № 5. P. 888.

16. Yokota H., Kaneshiro J., Uesu Y. Optical second harmonic generation microscopy as a tool of material diagnosis // Phys. Res. Int. 2012. V. 2012.

17. Palik E.D. Handbook of Optical Constants of Solids. Academic Press, 1998. 804 p.


Review

For citations:


Lavrov S.D. CALCULATION OF THE OPTICAL SECOND HARMONIC GENERATION EFFICIENCY IN THE LITHIUM NIOBATE DOMAIN STRUCTURES. Russian Technological Journal. 2016;4(4):3-12. (In Russ.) https://doi.org/10.32362/2500-316X-2016-4-4-3-12

Views: 377


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)