Technology for risk assessment at product lifecycle stages using fuzzy logic
https://doi.org/10.32362/2500-316X-2020-8-6-167-183
Abstract
About the Authors
A. N. ChesalinRussian Federation
Aleksandr N. Chesalin, Cand. Sci. (Engineering), Associate Professor of the Department of Computer and Information Security, Institute of Cybernetics
78, Vernadskogo pr., Moscow 119454
ResearcherID: D-8080-2019
S. Ya. Grodzenskiy
Russian Federation
Sergey Ya. Grodzenskiy, Dr. Sci. (Engineering), Professor of the Department of Information Technologies in Public Administration of the Institute of Innovative Technologies and Public Administration
78, Vernadskogo pr., Moscow 119454
ResearcherID: AAA-8359-2019
Pham Van Tu
Russian Federation
Pham Van Tu, Postgraduate Student, the Department of Metrology and Standardization, Institute of Physics and Technology
78, Vernadskogo pr., Moscow 119454
M. Yu. Nilov
Russian Federation
Mikhail Yu. Nilov, Postgraduate Student, the Department of Metrology and Standardization, Institute of Physics and Technology
78, Vernadskogo pr., Moscow 119454
A. N. Agafonov
Russian Federation
References
1. Zade L. Ponyatie lingvisticheskoi peremennoi i ego primenenie k prinyatiyu priblizhennykh reshenii: per. s angl., pod red. N.N. Moiseeva, S.A. Orlovskogo (The concept of a lingustic variable and its application to approximate reasoning). Moscow: Mir; 1976. 166 p. (in Russ.).
2. Zadeh L. Fuzzy Sets. Information and Control.1965;8(3):338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
3. Grodzenskiy S.Ya., Chesalin A.N. About the usage of fuzzy logic to reliability assessment of automated systems. Nelineinyi mir = Nonlinear world. 2017;5(4):17-23 (in Russ.)
4. Glushenko S.A. An adaptive neuro-fuzzy inference system for assessment of risks to an organization's information security. Business Informatics. 2017;1(39):68-77. http://doi.org/10.17323/1998-0663.2017.1.68.77
5. Chesalin A.N., Grodzenskii S.Ya, Nilov M.Yu. Method of self-assessment of the quality of management decisions. In: Proceedings of the International scientific and technical conference «Fundamental problems of radioengineering and device construction «INTERMATIC–2018»» 2018;(5):1149-1152 (in Russ.).
6. Hajer M., Ketata R., Taieb B., Samir.A. Comparative study of Fuzzy Hierarchical Hybrid approaches for control of Quality Management System. In: International Conference on Industrial Engineering and Systems Management (IESM-2015). 2015. P. 1034-1040. https://doi.org/10.1109/IESM.2015.7380282
7. Ying B., Hanyou W, Longkang W., Kangkang T. Study and analysis on fuzzy quality control for the high- end manufacturing process based on Taguchi quality loss function. J. Comput. Methods Sci. Eng. 2019;19(1):121-136. https://doi.org/10.3233/JCM-180857
8. Grodzenskii S.Ya., Grodzenskii Ya.S., Chesalin A.N. Sredstva i metody upravleniya kachestvom: uchebnoe posobie (Means and methods of quality management: textbook). Moscow: Prospekt; 2019. 128 p. (in Russ.). ISBN: 978-5-392-28446-7
9. Grodzenskii S.Ya. Upravlenie kachestvom: uchebnik. 2-e izd., pererab. i dop. (Quality Management: textbook). Moscow: Prospect; 2089. 320 p. (in Russ.). ISBN: 978-5-392-28172-5
10. Shtovba S.D. Proektirovanie nechetkikh sistem sredstvami MATLAB (Design of fuzzy systems using MATLAB). Moscow: Goryachaya liniya – Telekom; 2007. 288 p. (in Russ.).
11. Goodfellow I., Bengio Y., Courville A. Deep learning. Cambridge: The MIT Press; 2016. 800 p. ISBN: 0262035618.
12. Lokhin V.M., Romanov M.P., Kazachek N.A. The investigation of the periodic oscillations in the control systems with fuzzy controllers. Vestnik MGTU MIREA = Herald of MSTU MIREA. 2015;3-1(8): 138-155 (in Russ.).
13. Myznikova V.A., Ustimenko V.V., Chubar A.V. Fuzzy controllers construction in the SimInTech environment. Kosmicheskie apparaty i tekhnologii = Spacecrafts & Technologies. 2019;3(1):22-27 (in Russ.). https://doi.org/10.26732/2618-7957-2019-1-22-27
14. Kartashov B.A., Kozlov O.S., Shabaev E.A., Shchekaturov A.M. Sreda dinamicheskogo modelirovaniya tekhnicheskikh sistem SimInTech (SimInTech technical systems dynamic modeling environment). Moscow: DMK Press; 2017. 424 p. (in Russ.). ISBN: 978-5-97060-482-3
Supplementary files
|
1. Mamdani’s fuzzy logical conclusion | |
Subject | ||
Type | Исследовательские инструменты | |
View
(44KB)
|
Indexing metadata ▾ |
Review
For citations:
Chesalin A.N., Grodzenskiy S.Ya., Van Tu P., Nilov M.Yu., Agafonov A.N. Technology for risk assessment at product lifecycle stages using fuzzy logic. Russian Technological Journal. 2020;8(6):167-183. (In Russ.) https://doi.org/10.32362/2500-316X-2020-8-6-167-183