Nanoantenna modelling for their further use as data transmitter-receiver devices on 3-d integral circuits
https://doi.org/10.32362/2500-316X-2020-8-6-109-120
Abstract
About the Authors
D. A. SerovRussian Federation
Dmitry A. Serov, Engineer, Engineering Center for Mobile Solutions
78, Vernadskogo pr., Moscow 119454
K. V. Pershina
Russian Federation
Khristina V. Pershina, Laboratory Assistant, Engineering Center for Mobile Solutions
78, Vernadskogo pr., Moscow 119454
I. V. Burdina
Russian Federation
Irina V. Burdina, Laboratory Assistant, Engineering Center for Mobile Solutions
78, Vernadskogo pr., Moscow 119454
References
1. Petronijevic E., Centini M., Cesca T., Mattei G., Bovino F.A., Sibilia C. Control of Au nano-antenna emission enhancement of magnetic dipolar emitters by means of VO2 phase change layers. Opt. Express. 2019;27(17):2460-24273. https://doi.org/10.1364/OE.27.024260
2. Chen P.Y., Argyropoulos C., D’Aguanno G., Alù A. Enhanced second-harmonic generation by metasurface nanomixer and nanocavity. ACS Photonics. 2015;2(8):1000-1006. https://doi.org/10.1021/acsphotonics.5b00205
3. Sikdar D., Rukhlenko I.D., Cheng W., Premaratne M. Optimized gold nanoshell ensembles for biomedical applications. Nanoscale Res. Lett. 2013;8(1):142. https://doi.org/10.1186/1556-276X-8-142
4. Ni X.J., Emani N.K., Kildishev A.V., Boltasseva A., Shalaev V.M. Broadband light bending with plasmonic nanoantennas. Science. 2012;335(6067):427. https://doi.org/10.1126/science.1214686
5. Curto A.G., Volpe G., Taminiau T.H., Kreuzer M.P., Quidant R., Van Hulst N.F. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science. 2010;329(5994):930-933. https://doi.org/10.1126/science.1191922
6. Sugumaran S., Jamlos M.F., Ahmad M.N., Bellan C.S., Sivaraj M., Krishnan P. Nanoantenna Based Wireless Communication for Cancer Tumour Detection-An Overview. In: Proc. IEEE 3rd International conference on electronics and communication systems (ICECS 2016). P. 1111-1114.
7. Zang F., Su Z., Zhou L., Konduru K., Kaplan G., Chou S.Y. Ultra-sensitive Ebola virus antigen sensing via 3D nanoantenna arrays. Advanced Materials. 2019;31(30):1902331. https://doi.org/10.1002/adma.201902331
8. Pisarenko A.V., Vitriak E.A., Pavliuchyn T.O. Organization of high-speed data transfeer in modern field-programmable gate arrays. Radio electronic and computer systems. 2013;1(60):54-57 (in Russ.).
9. Bazgir M., Zarrabi F.B. A switchable split ring resonator nanoantenna design with organic material composite as a refractive index sensor. Opt. Commun. 2020;475:126211. https://doi.org/10.1016/j.optcom.2020.126211
10. Campbell S.D., Whiting E.B., Werner P.L., Werner D.H., Zhu D.Z. Three-dimensional Nanoantenna Inverse-design. In: Proceedings 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. 2019. https://doi.org/10.1109/APUSNCURSINRSM.2019.8889257
11. Shirzadian M., Rashed-Mohassel J., Naser-Moghaddasi M., Khatir M. Design of a wideband microstrip nanoantenna array. Opt. Quant. Electron. 2019;51(5):132. https://doi.org/10.1007/s11082-019-1852-6
12. https://mcs.mail.ru/blog/nanoantenny-dlya-sverhbystryh
13. Bankov S.E., Kurushin A.A., Razevig V.D. Analiz i optimizatsiya SVCh-struktur s pomoshch'yu HFSS. Seriya «Sistemy proektirovaniya» (Analysis and optimization of microwave structures using HFSS. Series «Design systems». Moscow: Solon-Press; 2012. P. 29-31 (in Russ.)
Supplementary files
|
1. Three-dimensional models of nanoantennas | |
Subject | ||
Type | Исследовательские инструменты | |
View
(45KB)
|
Indexing metadata ▾ |
Review
For citations:
Serov D.A., Pershina K.V., Burdina I.V. Nanoantenna modelling for their further use as data transmitter-receiver devices on 3-d integral circuits. Russian Technological Journal. 2020;8(6):109-120. (In Russ.) https://doi.org/10.32362/2500-316X-2020-8-6-109-120