Preview

Russian Technological Journal

Advanced search

Prospects for the use of ferrites with high magnetic permeability and permittivity as radio-absorbing materials

https://doi.org/10.32362/2500-316X-2020-8-6-87-108

Abstract

The paper presents an overview of studies on the influence of the main parameters of ferrites on their ability to absorb electromagnetic radiation in the megahertz range (more than 10 dB). The main advantage of ferrites is a high refractive index (more than 1000) in the megahertz range due to the combination of high values of magnetic and dielectric permeability, which makes it possible to produce radio-absorbing coatings of small thickness (less than 10 mm) that effectively absorb electromagnetic radiation. Studies show that the attenuation of the power of electromagnetic radiation reflected from the surface of the ferrite is due to both interference processes and the processes of dissipation of electromagnetic energy during propagation in the ferrite. The inversely proportional relationship between the refractive index and the frequency of electromagnetic radiation in the megahertz range provides the condition for the interference minimum of the reflected radiation at a constant thickness of the ferrite coatings. A high refractive index slows down the speed of propagation of electromagnetic waves in ferrites, which enhances the processes of dissipation of their energy. The paper presents studies on the influence of the basic chemical composition of ferrites, alloying additives, microstructure parameters and technological modes on their magnetic and dielectric permeability. Studies have shown that an excess of iron oxide in excess of stoichiometry, which provides the semiconducting properties of ferrite grains, significantly increases the dielectric constant. High values of the dielectric constant of ferrites are provided by a combination of the dielectric properties of grain-boundary layers and the semiconducting properties of the grains themselves, which form the barrier capacity of grain boundaries according to the Okazaki mechanism. Alloying ferrites with oxides TiO2, Bi2O3, CaO in an amount of up to 1 wt.% allows increasing the electrical resistance and dielectric constant of grain-boundary layers, providing an increase in the dielectric constant of ferrite as a whole. It has been established that the formation of a dense coarse-grained structure provides an increase in both the magnetic permeability and permittivity.

About the Authors

V. G. Kostishin
NUST "MISiS"
Russian Federation

Vladimir G. Kostishin, Dr. Sci. (Physics and Mathematics), Corresponding Member of the Academy of Engineering Sciences of the Russian Federation, Professor, Head of the Department of Technology of Electronics Materials, National Research Technological University "Moscow Institute of Steel and Alloys"

4, Leninsky Pr., Moscow, 119049



R. M. Vergazov
College of Electronic Technologies
Russian Federation

Rashit M. Vergazov, teacher, GAPOU of the Penza region «Kuznetsk College of Electronic Technologies»

34a, Komsomolskaya ul., Penza Region, Kuznetsk, 442530



S. B. Menshova
GBOU school №962
Russian Federation

Svetlana B. Menshova, Cand. Sci. (Engineering), teacher of mathematics and physics GBOU school №962

30A, Altufevskoe shosse, Moscow, 127562



I. M. Isaev
NUST "MISiS"
Russian Federation

Igor M. Isaev, Cand. Sci. (Engineering), Associate Professor, Vice-Rector for Security and General Affairs of the
National Research Technological University "Moscow Institute of Steel and Alloys"

4, Leninsky Pr., Moscow, 119049



References

1. Krivoshein D.A., Muravei L.A., Roeva N.N., Shorina O.S., Eriashvili N.D., Yurovitskii Yu.G., Yakovlev V.A. Ekologiya i bezopasnost' zhiznedeyatel'nosti: Ucheb. posobie dlya vuzov (Ecology and life safety: textbook for universities, (Ed.) L.A. Muravei. Moscow: YUNITI-DANA; 2000. 447 p. (in Russ.).

2. Burichenko L.A. Okhrana truda v grazhdanskoi aviatsii: Ucheb. dlya vuzov (Labor protection in civil aviation: Textbook for universities). Moscow: Transport; 1993. 288 p. (in Russ.).

3. Alekseev A.G., Shtager E.A., Kozyrev S.V. Fizicheskie osnovy tekhnologii STEALTH (Physical foundation of stealth technology). Sankt Peterburg: VVM.com Ltd Publishing; 2007; 284 р. (in Russ.). ISBN 5-9651-0240-2

4. Foxwell D., Jaxen D. Stealth approach: creating stealth ships. Jane's IDR (International Defense Review). 1988;31 43-45, 47-48.

5. Wang J., Lu L. Microwave Absorbing Features of Ce2(Co0.3Fe0.7)17/Ferrite Coating Material. Revue des Composites et des Matériaux Avancés. 2019;29(1):39-44. https://doi.org/10.18280/rcma.290107

6. Akinay Y., Hayat F., Colak B. Absorbing properties and structural design of PVB/Fe3O4 nanocomposite. Mater. Chem. Phys. 2019;229:460-466. https://doi.org/10.1016/j.matchemphys.2019.03.039

7. Druv P., Pullar R., Singh C., Carvalho F. Design and development of Ga-substituted Z-type hexaferrites for microwave absorber applications: Mössbauer, static and dynamic properties. Ceram. Int. 2020;47(1):1145-1162. https://doi.org/10.1016/j.ceramint.2020.08.231

8. Aizikovich B.V., Alekseev A.G., Kliodt M.F., Starostin A.P. Theoretical foundations of the creation of radio-absorbing coatings based on nanostructured materials. Trudy TsNII im. Akademika A.N. Krylova = Transactions of the Krylov State Research Centre. 2006;30(134):136-145 (in Russ.).

9. Shtager E.A. Otrazhenie radiovoln ot korablei i drugikh morskikh ob"ektov (Reflection of radio waves from ships and other marine objects). St. Petersburg: VVM; 2005. 418 p. (in Russ.). ISBN 5-9651-0041-8

10. Kumar A., Singh S. Development of Coatings for Radar Absorbing Materials at X-band. IOP Conf. Series Materials Science and Engineering. 2018;330:012006. https://doi.org/10.1088/1757-899X/330/1/012006

11. Vyzulin S.A., Kalikintseva D.A., Miroshnichenko E.L., Buz'ko V.Yu., Goryachko A.I. Microwave absorption properties of nickel-zinc ferrites synthesized by different means. Bulletin of the Russian Academy of Sciences: Physics. 2018;82(8):943-945. https://doi.org/10.3103/S1062873818080439

12. Vergazov R.M., Andreev V.G. Features of interference when electromagnetic waves reflected from ferrite plates on a metal substrate. In: Proceedings IX Int. Sci.-Pract. Conf. Aktual՚nye problemy nauki (Actual problems of science). Penza: Sokolov A.Yu. Publishing House; 2014. P. 215-219 (in Russ.).

13. Shol՚ts N.N., Piskarev K.A. Ferrity dlya radiochastot (Ferrites for radio frequencies). Leningrad: Energiya; 1966. 324 p. (in Russ.).

14. Bibikov S.B., Titov A.N., Cherepanov A.K. Synthesis of material with a given reflection coefficient in a wide range of frequencies and angles of incidence. In: Trudy XV Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii «Radiolokatsiya, navigatsiya, svyaz՚». (Proceedings of the XV International Scientific and Technical Conference «Radar, Navigation, Communication». Voronezh: «Sakvoee» Publishing House; 2009. P. 1578-1584 (in Russ.).

15. Okadzaki K. Tekhnologiya keramicheskikh dielektrikov: perevod s yaponskogo (Technology of ceramic dielectrics). Moscow: Energiya; 1976. 336 p. (in Russ.). [Orazaki K. Ceramic engineering for dielectrics.Tokio; 1969.]

16. Vergazov R.M. Influence of alloying additions on the dielectric constant of Ni-Zn ferrites. In: Proceedings XIII Int. Sci.-Pract. Conf. Aktual՚nyye problemy nauki = Actual problems of science. Penza: PGU Publishing House; 2018. P. 235-240 (in Russ.).

17. Detlaf A.A., Yavorskii V.M. Kurs fiziki: Ucheb. posobie dlya vtuzov (Physics course: Textbook. Manual for technical colleges). Moscow: Akademiya; 2008. 719 р. (in Russ.). ISBN 978-5-7695-4875-8

18. Garnero L., Franchois A., Hugonin J., Pichot C., Joachimowicz N. Microwave imaging-complex permittivity reconstruction by simulated annealing. IEEE Trans. Microwave Theory Tech. 1991;39(11):1801-1807. https://doi.org/10.1109/22.97480

19. Pokusin D.N., Chukhlebov E.A., Zalesskii M.Yu. Complex permeability ferrite in the natural ferromagnetic resonance. Radiotekhnika i elektronika = Technology and Electronics. 1991;36(11):2085-2091 (in Russ.).

20. Rankis G.Zh. Dinamika namagnichivaniya polikristallicheskikh ferritov (Dynamics of magnetization of polycrystalline ferrites). Riga: Zinatne; 1981.186 p. (in Russ.).

21. Letyuk L.M., Zhuravlev G.I. Khimiya i tekhnologiya ferritov (Ferrite chemistry and technology). Leningrad: Khimiya; 1983. 256 p. (in Russ.).

22. Antsiferov V.N., Letyuk L.M., Andreev V.G., Gonchar A.V., Dubrov A.N., Kostishin V.G., Maiorov V.R., Satin A.I. Problemy poroshkovogo materialovedeniya. Chast' 5. Tekhnologiya proizvodstva poroshkovykh ferritovykh materialov (Problems of powder materials science. Part 5. Technology of production of ferrite powder materials). Ekaterinburg: URO RAN Publ.; 2005. 408 p. (in Russ.).

23. Antsiferov V.N., Gonchar A.V., Andreev V.G. Letyuk L.M. Vodorastvorimye svyazuyushchie veshchestva v tekhnologii poroshkovykh ferritovykh materialov (Water-soluble binders in the technology of ferrite powder materials). Perm': Resp. inzhener.-tekhn. tsentr poroshkovoy metallurgii: Perm National Research Polytechnic University Publishing House; 1996 (1997). 188 p. (in Russ.). ISBN 5-88151-112-3

24. Antsiferov V.N., Andreev V.G., Gonchar A.V. et al. Reologiya dispersnykh sistem v tekhnologii funktsional'noi magnitnoi keramiki (Rheology of dispersed systems in the technology of functional magnetic ceramics). Ekaterinburg: URO RAN Publ.; 2003. 208 p. (in Russ.).

25. Kostishin V.G., Vergazov P.M., Andreev V.G., Bibikov S.B., Podgornaya S.V., Morchenko A.T. Effect of microstructure on properties of radio-absorbing nickel-zinc ferrites. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2010;4:18-21 (in Russ.).

26. Men'shova S.B., Lapshin E.V., Bibikov S.B., Prokof'ev M.V., Vergazov R.M. Influence of microstructure parameters on the radiophysical characteristics of Ni-Zn ferrite materials. Izvestiya Vysshikh Uchebnykh Zavedenii. Povolzhskii region. (Tekhnicheskie nauki) = University Proceedings. Volga region. (Technical sciences). 2010;3(15):123- 134 (in Russ.).

27. Vergazov R.M., Kostishin V.G., Andreev V.G., Morchenko A.T., Komlev A.S., Nikolaev A.N. Influence of alloying additives on the properties of radio-absorbing Mg-Zn-ferrites obtained by the method of radiation-thermal sintering. Inzhenernyi vestnik Dona: elеktron. nauch. zhurn. = Engineering J. of Don: electronic scientific journal. 2013;3(26):118 (in Russ.).

28. Vergazov R.M. Influence of TiO2 additives on the radio-absorbing properties of Mn-Zn ferrites. Trudy Mezhdunarodnogo simpoziuma «Nadezhnost՚ i kachestvo» = Proceedings of the International Symposium «Reliability and Quality». Penza; 2016. V. 2. P. 103-104 (in Russ.).

29. Vergazov R.M., Andreev V.G. The influence of alloying additives on the temperature dependence of the dielectric constant of Ni-Zn ferrites. In: Proceedings XV Int. Sci.-Pract. Conf. Aktual'nyye problemy nauki = Actual problems of science. Penza: PGU Publishing House; 2019. P. 161-166 (in Russ.).

30. Makarov B.V., Gil'denblat Sh.N. Influence of some technological factors on the density of products from Mn-Zn ferrites. Elektronnaya tekhnika. Seriya 7 = Electronic Engineering. Series 7. 1971;2:37-44 (in Russ.).

31. Makarov B.V., Andreev V.G., Letyuk L.M. Deformation of granules during dry pressing of ferrite press-powders. Poroshkovaya metallurgiya = Powder Metallurgy. 1985;5:6-9 (in Russ.).

32. Kostishin V.G., Vergazov R.M., Andreev V.G., Bibikov S.B., Morchenko A.T., Kaneva I.I., Maiorov V.R. The influence of technology factors on the dielectric permeability and radio absorbing characteristics of nickel-zinc ferrites. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2011;2:33-37 (in Russ.).

33. Andreev V.G., Menshova S.B. Influence of the degree of aggregation of powders on the processes of structure formation and properties of highly permeable Mn – Zn ferrites. Izvestiya Vysshikh Uchebnykh Zavedenii. Povolzhskii region. (Tekhnicheskie nauki) = University Proceedings. Volga region. (Technical sciences). 2007;3:143-149 (in Russ.).

34. Letyuk L.M., Kostishin V.G., Gonchar A.V. Tekhnologiya ferritovykh materialov magnitoelektronik (Ferrite materials technology for magnetoelectronics). Moscow: MISiS Publishing House; 2005. 352 p. (in Russ.). ISBN 5-87623-133-9

35. Andreev V.G., Menshova S.B., Klimov A.N., Vergazov R.M., Bibikov S.B., Prokofiev M.V. Influence of microstructure on properties of Ni–Zn ferrite radio-absorbing materials. J. Magn. Magn. Mater. 2015;394(1):1-6. https://doi.org/10.1016/j.jmmm.2015.06.007

36. Vergazov R.M., Andreev V.G. Investigation of the temperature dependence of the dielectric constant of radio-absorbing Ni-Zn ferrites. In: Proceedings XII Int. Sci.-Pract. Conf. Aktual՚nyye problemy nauki = Actual problems of science. Kuznetsk: KIIUT Publishing House; 2017. P. 152-154 (in Russ.).

37. Kostishin V.G., Vergazov R.M., Andreev V.G., Bibikov S.B. Influence of alloying additives and the gas regime of the furnace atmosphere during sintering on the absorption of electromagnetic waves by Ni-Zn ferrites. In: Proceedings of the VIII international conference «Perspektivnyye tekhnologii, oborudovaniye i analiticheskiye sistemy dlya materialovedeniya i nanomaterialov» = «Advanced Technologies, Equipment and Analytical Systems for Materials Science and Nanomaterials». June 9-10, 2011. Almaty. P. 521-530 (in Russ.).

38. Andreev V.G., Menshova S.B., Klimov A.N., Vergazov R.M. The Influence of Basic Composition and Microstructures on the Properties of Ni-Zn Ferrite Radio-Absorbing Materials. J. Magn. Magn. Mater. 2015;393(1):569-573. https://doi.org/10.1016/j.jmmm.2015.06.030

39. Kostishyn V.G., Vergazov R.M., Andreev V.G., Bibikov S.B., Morchenko A.T., Kaneva I.I., Maiorov V.R. Influence of Technological Factors on Dielectric Permeability and Radio-Wave Absorbing Characteristics of Nickel-Zinc Ferrites. Russian Microelectronics. 2012;41(8):469-473. https://doi.org/10.1134/S1063739712080094

40. Druv P., Meena S., Pullar R., Carvalho F. Investigation of structural, magnetic and dielectric properties of gallium substituted Z-type Sr3Co2-xGaxFe24O41 hexaferrites for microwave absorbers. J. Alloy. Compd. 2020;822:153470. https://doi.org/10.1016/j.jallcom.2019.153470

41. Men՚shova S.B., Bibikov S.B., Vergazov R.M., Andreev V.G., Kulikovskii E.I. Method of producting radio-absorbing nickel-zinc ferrite: Pat. 2486645 Russia. Publ. 27.06.2013. Bul. № 18 (in Russ.).

42. Kostishin V.G., Vergazov R.M., Andreev V.G., Podgornaya S.V. Method for producing radio-absorbing magnesium-zinc ferrite: Pat. 2454747 Russia. Publ. 27.06.2012. Bul. № 18 (in Russ.).

43. Kostishin V.G., Vergazov R.M., Andreev V.G., Bibikov S.B. Investigation of the absorption of electromagnetic waves in composite materials based on Mn-Zn-ferrite powders. In: Proceedings of the IX international conference «Perspektivnyye tekhnologii, oborudovaniye i analiticheskiye sistemy dlya materialovedeniya i nanomaterialov» = «Advanced Technologies, Equipment and Analytical Systems for Materials Science and Nanomaterials». Astrakhan: Astrakhan University Publishing House; 2012. P. 619-627 (in Russ.).

44. Vergazov R.M., Andreev V.G. Investigation of the radio-absorbing properties of Mn-Zn ferrites. In: Proceedings X Int. Sci.-Pract. Conf. Aktual՚nyye problemy nauki = Actual problems of science. Kuznetsk: KIIUT Publishing House; 2015. P. 165-168 (in Russ.).


Supplementary files

1. Ferrite microstructure
Subject
Type Исследовательские инструменты
View (75KB)    
Indexing metadata ▾
The paper presents studies on the influence of the basic chemical composition of ferrites, alloying additives, microstructure parameters and technological modes on their magnetic and dielectric permeability. Studies have shown that an excess of iron oxide in excess of stoichiometry, which provides the semiconducting properties of ferrite grains, significantly increases the dielectric constant. Alloying ferrites with oxides TiO2, Bi2O3, CaO in an amount of up to 1 wt% allows increasing the electrical resistance and dielectric constant of grain-boundary layers, providing an increase in the dielectric constant of ferrite as a whole. It has been established that the formation of a dense coarse-grained structure provides an increase in both the magnetic permeability and permittivity.

Review

For citations:


Kostishin V.G., Vergazov R.M., Menshova S.B., Isaev I.M. Prospects for the use of ferrites with high magnetic permeability and permittivity as radio-absorbing materials. Russian Technological Journal. 2020;8(6):87-108. (In Russ.) https://doi.org/10.32362/2500-316X-2020-8-6-87-108

Views: 1099


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)