Preview

Russian Technological Journal

Advanced search

All-dielectric metalens based on a single colloidal particle for photoconductive optical-to-terahertz switches

https://doi.org/10.32362/2500-316X-2020-8-6-78-86

About the Authors

I. A. Glinskiy
MIREA – Russian Technological University
Russian Federation

Igor A. Glinskiy, Leading Engineer, IT Solutions Development Department, Mobile Solutions Engineering Center, Assistant Department of Nanoelectronics, Institute of Physics and Technology MIREA – Russian Technological University

78, Vernadskogo pr., Moscow, 119454

ResearcherID: I-4334-2015, Scopus Author ID: 57190616854



N. V. Zenchenko
MIREA – Russian Technological University
Russian Federation

Nikolay V. Zenchenko, Leading Engineer, IT Solutions Development Department, Mobile Solutions Engineering Center, Assistant Department of Nanoelectronics, Institute of Physics and Technology MIREA – Russian Technological University

78, Vernadskogo pr., Moscow, 119454

ResearcherID: K-2233-2015, Scopus Author ID: 56891470400



D. S. Ponomarev
Institute of Ultra High Frequency Semiconductor Electronics of RAS
Russian Federation

Dmitry S. Ponomarev, Ph.D. is Physics and Math, Deputy Director, Chief Researcher at V.G. Mokerov Institute of Ultra High Frequency Semiconductor Electronics of Russian Academy of Sciences (IUHFSE RAS)

Nagorny proezd, 7/5, Moscow, 117105

ResearcherID: K-1632-2014, Scopus Author ID: 37124831400



References

1. Pereira M.F. TERA-MIR radiation: materials, generation, detection and applications. Opt. Quant. Electron. 2014;46(4):491-493. https://doi.org/10.1007/s11082-014-9883-5

2. Zaytsev K.I., Dolganova I.N., Chernomyrdin N.V., Katyba G.M., Gavdush A.A., Cherkasova O.P., Komandin G.A., Shchedrina M.A., Khodan A.N., Ponomarev D.S., Reshetov I.V., Karasik V.E., Skorobogatiy M., Kurlov V.N., Tuchin V.V. The progress and perspectives of terahertz technology for diagnosis of neoplasms: A review. Journal of Optics (United Kingdom). 2020;22(1):013001. https://doi.org/10.1088/2040-8986/ab4dc3

3. Ting H., Jing-ling S. Applications of Terahertz Spectroscopy in Illicit Drugs Detection. PubMed. 2013;33(9):2348-2353.

4. Musina G.R., Nikitin P.V., Chernomyrdin N.V., Dolganova I.N., Gavdush A.A., Komandin G.A., Ponomarev D.S., Potapov A.A., Reshetov I.V., Tuchin V.V., Zaytsev K.I. Prospects of terahertz technology in diagnosis of human brain tumors - A review. Journal of Biomedical Photonics & Engineering (J-BPE). 2020;6(2):020201. https://doi.org/10.18287/JBPE20.06.020201

5. Yachmenev A.E., Lavrukhin D.V., Glinskiy I.A., Zenchenko N.V., Goncharov Yu.G., Spektor I.E., Khabibullin R.A., Otsuji T., Ponomarev D.S. Metallic and dielectric metasurfaces in photoconductive terahertz devices: a review. Opt. Eng. 2019;59(6):061608 (19 p.). https://doi.org/10.1117/1.OE.59.6.061608

6. Lavrukhin D.V., Yachmenev A.E., Pavlov A.Yu., Khabibullin R.A., Goncharov Yu.G., Spektor I.E., Komandin G.A., Yurchenko S.O., Chernomyrdin N.V., Zaytsev K.I., Ponomarev D.S. Shaping the spectrum of terahertz photoconductive antenna by frequency-dependent impedance modulation. Semicond. Sci. Technol. 2019;34(3):034005. https://doi.org/10.1088/1361-6641/aaff31

7. Lavrukhin D.V., Yachmenev A.E., Glinskiy I.A., Khabibullin R.A., Goncharov Y.G., Ryzhii M., Otsuji T., Spector I.E., Shur M., Skorobogatiy M., Zaytsev K.I., Ponomarev D.S. Terahertz photoconductive emitter with dielectric-embedded high-aspect-ratio plasmonic grating for operation with low-power optical pumps. AIP Advances. 2019;9(1):015112. https://doi.org/10.1063/1.5081119

8. Lepeshov S., Gorodetsky A., Krasnok A., Rafailov E., Belov P. Enhancement of terahertz photoconductive antenna operation by optical nanoantennas. Laser & Photonics Reviews. 2017;11(1):1600199. https://doi.org/10.1002/lpor.201600199

9. Yardimci N.T., Cakmakyapan S., Hemmati S., Jarrahi M. A high power broadband terahertz source enabled by three-dimensional light confinement in a plasmonic nanocavity. Scientific Reports. 2017;7(1):4166. https://doi.org/10.1038/s41598-017-04553-4

10. Castro-Camus E., Alfaro M. Photoconductive devices for terahertz pulsed spectroscopy: a review. Photon. Res. 2016;4(3):A36-А42. https://doi.org/10.1364/PRJ.4.000A36

11. Park S.-G., Jin K.H., Yi M., Ye J.C., Ahn J., Jeong K.-H. Enhancement of terahertz pulse emission by optical nanoantenna. ACS Nano. 2012;6(3):2026-2031. https://doi.org/10.1021/nn204542x

12. Catrysse P.B., Veronis G., Shin H., Shen J.-T., Fan S. Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits. Appl. Phys. Lett. 2006;88(3)031101. https://doi.org/10.1063/1.2164905

13. Mitrofanov O., Siday T., Thompson R.J., Luk T.S., Brener I., Reno J.L. Efficient photoconductive terahertz detector with all-dielectric optical metasurface. APL Photonics. 2018;3(5):051703. https://doi.org/10.1063/1.5011420

14. Katyba G.M., Zaytsev K.I., Dolganova I.N., Shikunova I.A., Chernomyrdin N.V., Yurchenko S.O., Komandin G.A., Reshetov I.V., Nesvizhevsky V.V., Kurlov V.N. Sapphire shaped crystals for waveguiding, sensing and exposure applications. Progress in Crystal Growth and Characterization of Materials. 2018;64(4):133-151. https://doi.org/10.1016/j.pcrysgrow.2018.10.002

15. Lo Y.H., Leonhardt R. Aspheric lenses for terahertz imaging. Opt. Express. 2008;16(20):15991-15998. https://doi.org/10.1364/OE.16.015991

16. Formanek F., Brun M.-A., Umetsu T., Omori S., Yasuda A. Aspheric silicon lenses for terahertz photoconductive antennas. Appl. Phys. Lett. 2009;94(2):021113-021113-3. https://doi.org/10.1063/1.3072357

17. Chernomyrdin N.V., Frolov M.E., Lebedev S.P., Reshetov I.V., Spektor I.E., Tolstoguzov V.L., Karasik V.E., Khorokhorov A.M., Koshelev K.I., Schadko A.O., Yurchenko S.O., Zaytsev K.I. Wide-aperture aspherical lens for high-resolution terahertz imaging. Rev. Sci. Instrum. 2017;88(1):014703. https://doi.org/10.1063/1.4973764

18. Minin I.V., Liu C.-Y., Geints Y.E., Minin O.V. Recent advances in integrated photonic jet-based photonics. Photonics. 2020;7(2):41. https://doi.org/10.3390/photonics7020041

19. Minin I.V., Minin O.V., Glinskiy I.A., Khabibullin R.A., Malureanu R., Lavrinenko A.V., Yakubovsky D.I., Arsenin A.V., Volkov V.S., Ponomarev D.S. Plasmonic nanojet: an experimental demonstration. Opt. Lett. 2020;45(12):3244-3247. https://doi.org/10.1364/OL.391861

20. Edsberg L. Introduction to Computation and Modeling for Differential Equations, 2nd Edition. Hoboken, New Jersey: Wiley; 2015. 288 p. ISBN: 978-1-119-01844-5


Supplementary files

1. Optical-to-terahertz switch with metalens based on a single dielectric microparticle
Subject
Type Исследовательские инструменты
View (18KB)    
Indexing metadata ▾
We theoretically study the focusing of laser pump pulse by a single dielectric microparticle placed onto the gap between the electrodes of an optical-to-terahertz (THz) switches (OTS). To reduce the Fresnel losses due to reflection of the pump pulse from the surface of the photoconductor, we additionally use an antireflection coating layer – aluminum oxide. We use a semi-insulating gallium arsenide as a photoconductor. It is shown that the optimization of the microparticle diameter and thickness of an aluminum oxide layer makes it is possible to achieve the most efficient transmission of the laser pump pulse into the photoconductor with an increased amplitude of spatial radiation localization. The obtained results indicate advantages of such dielectric metasurfaces in the designing of OTS. Moreover, the proposed design of a metalens based on a single dielectric microparticle can become a promising method for increasing the efficiency of OTS.

Review

For citations:


Glinskiy I.A., Zenchenko N.V., Ponomarev D.S. All-dielectric metalens based on a single colloidal particle for photoconductive optical-to-terahertz switches. Russian Technological Journal. 2020;8(6):78-86. (In Russ.) https://doi.org/10.32362/2500-316X-2020-8-6-78-86

Views: 715


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)