Methods of effective media as optimal methods for modeling the physical properties of nanostructures
https://doi.org/10.32362/2500-316X-2020-8-5-68-77
Abstract
This paper considers various methods of effective media as a tool for studying both optical and magneto-optical properties of various nanostructures, primarily magnetic nanostructures. Formulas for finding diagonal and non-diagonal components of the permittivity tensor for all basic approximations of the effective medium were obtained explicitly. These formulas are valid for both nanocomposites and granular alloys. The possibility of predicting various optical and magneto-optical properties of such structures is discussed using the example of the transverse Kerr effect as a promising non-contact method for studying nanostructures for a ferromagnetic nanocomposite (CoFeZr)x(MgF2)100-x. A possible application of the obtained formulas is discussed. Various methods of effective media make it possible to study nanostructures in a wide range of values of the concentration of the metal (magnetic) component Х. The paper notes and discusses the contribution of various mechanisms that affect the physical properties of such structures, especially in the IR region of the spectrum, where the quasi-classical dimensional effect is most pronounced. The form factor of nanocomposite particles and the average particle size are such contributions that can be taken into account. The contribution of the quasi-classical dimensional effect to the diagonal and non-diagonal components of the structure's permittivity tensor is analyzed within the framework of the Drude-Lorentz model. The problem being solved in this work is relevant, since interesting and important effects are observed in magnetic nanostructures, such as the Kerr effect, anomalous absorption, giant magnetoresistance, tunnel magnetoresistance, and many others. These effects play an important role in modern electronic devices, which makes this work particularly relevant.
About the Authors
A. N. YurasovRussian Federation
Alexey N. Yurasov, Dr. Sci. (Physics and Mathematics), Assistant Professor, Deputy Head of the Department of Nanoelectronics, Deputy Director of the Physico-Technological Institute. Scopus Author ID: 6602974416
78, Vernadskogo pr., Moscow 119454
M. M. Yashin
Russian Federation
Maxim M. Yashin, Senior teacher Department of Nanoelectronics, MIREA – Russian Technological University (78, Vernadskogo pr., Moscow 119454); Assistant Lecturer, Department of Physics, Bauman Moscow State Technical University (5, str. 1, 2-ya Baumanskaya ul., Moscow 105005). Scopus Author ID: 57191628251
References
1. Yashin M.M., Yurasov A.N., Ganshina E.A., Garshin V. V. Simulation of the spectra of the transverse Kerr effect of magnetic nanocomposites CoFeZr−Al2O3. Herald of the Bauman Moscow State Technical University. Series Natural Sciences. 2019;(5):63-72. https://doi.org/10.18698/1812-3368-2019-5-63-72
2. Hrabovský D., Caicedo J.M., Herranz G., Infante I.C., Sánchez F., Fontcuberta J. Jahn-Teller contribution to the magneto-optical effect in thin-film ferromagnetic manganites. Phys. Rev. B. 2009;79(5):052401-1–052401-4. https://doi.org/10.1103/PhysRevB.79.052401
3. Vyzulin S.A., Gorobinskii A.V., Kalinin Y.E., Sitnikov A.V., Lebedeva E.V., Syr'ev N.E., Tro-fimenko I.T., Chekrygina Y.I., Shipkova I.G. Ferromagnetic resonance, magnetic properties, and resistivity of (CoFeZr)x(Al2O3)1–x/Si multilayer nanostructures. Bull. Russ. Acad. Sci.: Physics. 2010;74(10):1380-1382. https://doi.org/10.3103/S1062873810100151
4. Yurasov A. N., Yashin M. M. The effective medium as a tool for analyzing the optical properties of nanocomposites. Rossiiskii tekhnologicheskii zhurnal = Russian Technological Journal. 2018; 6(2):56-66 (in Russ.). https://doi.org/10.32362/2500-316X-2018-6-2-56-66
5. Gan'shina E., Garshin V., Perova N., Zykov G., Aleshnikov А., Kalinin Yu., Sitnikov A. Magnetooptical properties of nanocomposites ferromagnetic-carbon. Journal of Magnetism and Magnetic Materials. 2019;(470):135-138. https://doi.org/10.1016/j.jmmm.2017.11.038
6. Gusev A.I. Nanomaterialy, nanostruktury, nanotekhnologii (Nanomaterials, Nanostructures, Nanotechnologies). Moscow: Fizmatlit; 2009. 416 p. (in Russ.). ISBN 978-5-9221-0582-8
7. Sushko M.Y., Kriskiv S.K. Compact group method in the theory of permittivity of heterogeneous systems. Technical Physics. The Russian Journal of Applied Physics. 2009;54(3): 423-427. https://doi.org/10.1134/S1063784209030165
8. Landau L., Lifshits E. Kurs teoreticheskoi fiziki.(Course of theoretical physics). V. 8. Elektrodinamika sploshnykh sred (Electrodynamics of continuous media). Moscow: Physmathlit; 2016. 661 p. (in Russ.)
9. Khanikaev A., Granovsky A., Clerk J. P. Influence of the size distribution of granules and of their attractive interaction on the percolation threshold in granular alloys. Physics of the Solid State. 2002; 44(9): 1611-16123. https://doi.org/10.1134/1.1507232
10. Fadeev E., Blinov M., Garshin V., Tarasov, O., Ganshina E., Prudnikova M., Prudnikov V., Lahderanta E., Rylko, V., Granovsky A. Magnetic Properties of (Со40Fe40B20)x(SiO2)100–x nanocomposites near the percolation threshold. Bull. Russ. Acad. Sci. Phys. 2019; (83)7: 835-837. https://doi.org/10.3103/S1062873819070153
11. Yashin M.M., H.B. Mirzokulov Symmetrized Maxwell–Garnett approximation as an effective method for studying nanocomposites. Rossiiskii tekhnologicheskii zhurnal = Russian Technological Journal. 2019;(7)4:92100 (in Russ.). https://doi.org/10.32362/2500-316X-2019-7-4-92-100
12. Aleshnikov A. A., Kalinin Yu. E., Sitnikov A.V., Fedosov A. G. Magnetic properties of multi-layer structures based on nanocomposites (Co45Fe45Zr10)x(Al2O3)100-x. Perspektivnye Materialy. 2012;(5):68-75 (in Russ.)
13. Buravtsova V., Ganʼshina E., Lebedeva E., Syrʼev N., Trofimenko I., Vyzulin S., Shipkova I., Phonghirun S., Kalinin Yu., Sitnikov A. The features of TKE and FMR in nanocomposites-semiconductor multilayers. Solid State Phenomena. 2011;168-169:533–536. https://doi.org/10.4028/www.scientific.net/SSP.168-169.533
14. Hosseinifar A., Shariaty-Niassar M., Ebrahimi S., Moshref-Javadi M. Synthesis, characterization, and application of partially blocked amine-functionalized magnetic nanoparticles. Langmuir. 2017;33(51):14728-14737. https://doi.org/10.1021/acs.langmuir.7b02093
15. Domashevskaya E. P., Ivkov S. A., Sitnikov A.V., Stognei O. V., Kozakov A. T., Nikol'skii A.V. Influence of the relative content of a metal component in a dielectric matrix on the formation and dimensions of cobalt nanocrystals in Cox(MgF2)100−x film composites. Phys. Solid State. 2019;61(2):71-29. https://doi.org/10.1134/S1063783419020112
Supplementary files
|
1. Yurasov_Fig.1 | |
Subject | ||
Type | Исследовательские инструменты | |
View
(30KB)
|
Indexing metadata ▾ |
Review
For citations:
Yurasov A.N., Yashin M.M. Methods of effective media as optimal methods for modeling the physical properties of nanostructures. Russian Technological Journal. 2020;8(5):68-77. (In Russ.) https://doi.org/10.32362/2500-316X-2020-8-5-68-77