Preview

Russian Technological Journal

Advanced search

Ferroelectric memory: state-of-the-art manufacturing and research

https://doi.org/10.32362/2500-316X-2020-8-5-44-67

Abstract

Semiconductor industry calls for emerging memory, demonstrating high speed (like SRAM or DRAM), nonvolatility (like Flash NAND), high endurance and density, good scalability, reduced energy consumption and reasonable cost. Ferroelectric memory FRAM has been considered as one of the emerging memory technologies for over 20 years. FRAM uses polarization switching that provides low power consumption, nonvolatility, high speed and endurance, robust data retention, and resistance to data corruption via electric, magnetic fields and radiation. Despite the advantages, market share held by FRAM manufacturers is insignificant due to scaling challenges. State-of-the-art FRAM manufacturing is studied in this paper. Ferroelectric capacitors and memory cells made by main commercial FRAM manufactures (Texas Instruments, Cypress Semiconductor, Fujitsu и Lapis Semiconductor) are explored. All memory cells are based on the lead zirconate titanate PZT capacitor with the thickness of about 70 nm and IrOx/Ir or Pt electrodes. The leading FRAM technology remains the 130 nm node CMOS process developed at Texas Instruments fabs. New approaches to further scaling and new devices based on ferroelectrics are reviewed, including binary ferroelectrics deposited by ALD techniques, piezoelectronic transistors, ferroelectric/2D-semiconductor transistor structures, and others. Whether FRAM technology will be able to resolve one of the main contradictions between a high-speed processor and a relatively slow nonvolatile memory depends on the success of the new technologies integration.

About the Authors

D. A. Abdullaev
MIREA – Russian Technological University; Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences
Russian Federation

Daniil A. Abdullaev, Cand. Sci. (Engineering), Researcher of the Institute of Nanotechnology of Microelectronics RAS, Researcher of REC “Technological Center”, MIREA – Russian Technological University. ResearcherID: AAO-5932-2020; Scopus Author ID: 56741027200

32A, Leninsky pr., Moscow 119991
78, Vernadskogo pr., Moscow 119454



R. A. Milovanov
MIREA – Russian Technological University; Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences
Russian Federation

Roman A. Milovanov, Cand. Sci. (Engineering), Deputy Head of Physics and Technology Department Institute of Nanotechnology of Microelectronics RAS, Senior Researcher ESU "Electronics", MIREA – Russian Technological University. Scopus Author ID: 55794840600

32A, Leninsky pr., Moscow 119991
78, Vernadskogo pr., Moscow 119454 



R. L. Volkov
National Research University of Electronic Technology – MIET
Russian Federation

Roman L. Volkov, Cand. Sci. (Physics and Mathematics), Senior Researcher of Electron Microscopy Laboratory, Senior Lecturer of General Physics Chair. ResearcherID: C-8431-2017; Scopus Author ID: 52564796300

1, Shokin pl., Zelenograd, Moscow 124498



N. I. Borgardt
National Research University of Electronic Technology – MIET
Russian Federation

Nikolay I. Borgardt, Dr. Sci. (Physics and Mathematics), Professor, Head of Electron Microscopy Laboratory, Head of the Center for Collective Use "Diagnostics and Modification of Microstructures and Nano-Objects", Head of General Physics Chair. ResearcherID: I-7869-2014; Scopus Author ID: 6603557021

1, Shokin pl., Zelenograd, Moscow 124498



A. N. Lantsev
CJSC Scan
Russian Federation

Andrey N. Lantsev, General Director

10B, Druzhby ul., Moscow 119330




K. A. Vorotilov
https://www.researchgate.net/profile/Konstantin_Vorotilov
MIREA – Russian Technological University
Russian Federation

Konstantin A. Vorotilov, Dr. Sci. (Engineering), Professor, Director of REC “Technological Center”. ResearcherID A-3331-2011; Scopus Author ID: 7004711340

78, Vernadskogo pr., Moscow 119454



A. S. Sigov
https://www.researchgate.net/profile/A_Sigov
MIREA – Russian Technological University
Russian Federation

Alexander S. Sigov, Academician of RAS, President. ResearcherID L-4103-2017; Scopus Author ID: 35557510600

78, Vernadskogo pr., Moscow 119454



References

1. Milovanov R.A., Kelm E.A. Structure of EEPROM and FLASH Memory Cells. Nano- i mikrosistemnaya tekhnika = J. NANO- and MICROSYSTEM Technique. 2015;4(177):45-59 (in Russ.).

2. Defaÿ E. Ferroelectric dielectrics integrated on silicon. N.Y.: John Wiley & Sons, 2013. 448 p.

3. Vorotilov K.A., Mukhortov V.M., Sigov A.S. Integrirovannye segnetoelektricheskie ustroistva (Integrated ferroelectric devices). (Ed.). A.S. Sigov. Moscow: Energoatomizdat; 2011. 175 p. (in Russ.). ISBN 978-5-283-00872-1

4. Vorotilov K.A., Sigov A.S. Ferroelectric memory. Phys. Solid State. 2012;54(5):894-899. https://doi.org/10.1134/S1063783412050460

5. Vorotilov K. A., Sigov A. S. Ferroelectric Random Access Memory: Prospect Technology and Materials. Physics of the Solid State. 2008;10(99):30-42 (in Russ.).

6. Rodriguez J., Remack, K., Gertas, J., Wang L., Zhou C., Boku K., Rodriguez-Latorre J., Udayakuma, K.R., Summerfelt S., Moise T., Kim D., Groat J., Eliason J., Depner M., Chu F. Reliability of Ferroelectric Random Access memory embedded within 130nm CMOS. In: 2010 IEEE International Reliability Physics Symposium (IRPS). 2010. P. 750-758. https://doi.org/10.1109/IRPS.2010.5488738

7. FRAM Guide Book. 5th Edition. Fujitsu Lmtd. Electronic Devices. 2005. 57 p.

8. Meena J.S., Sze S.M., Chand U.Ch., Tseng T.-Y. Overview of emerging nonvolatile memory technologies. Nanoscale research letters. 2014;9(526):1-33. https://doi.org/10.1186/1556-276X-9-526

9. Emerging Non-Volatile Memories. Yole Developpement SARL. 2013. 16 p.

10. Emerging Memory (STT-MRAM, PCRAM, ReRAM, 3D XPointTM) Technology/Products Roadmap. TechInsights Inc. 2017. 12 p.

11. Handbook of Nanomagnetism: Applications and Tools, R.A. Lukaszew (Ed.)., New York , Taylor and Francis, 2015. 304 p. https://doi.org/10.1201/b18942

12. DRAM Technology/Products Roadmap. TechInsights Inc. 2017. 15 p.

13. Non-Volatile Ferroelectric Random Access Memory (FRAM). Fujitsu Lmtd. 2015. 5 p. https://www.fujitsu.com/us/Images/SPBG_FRAM_Overview_BR.pdf (дата обращения 18.08.2020)

14. Sayyah R., Macleod T.C., Ho F.D. Radiation-hardened electronics and ferroelectric memory for space flight systems. Ferroelectrics. 2011;413(1):170-175. https://doi.org/10.1080/00150193.2011.554145

15. Brewer S.J., Williams S.C., Griffin L.A., Cress C.D., Rivas M., Rudy R.Q., Polcawich R.G., Glaser E.R., Bassiri- Gharb N. Enhanced radiation tolerance in Mn-doped ferroelectric thin films. Appl. Phys. Lett. 2017;111(2):022906. https://doi.org/10.1063/1.4992791

16. Lains M., Glass A. Segnetoelektriki i rodstvennye materialy: per. s angl.; pod red. V.V. Lemanova i G.A. Smolenskogo (Ferroelectrics and related materials: trans. from Engl.; (Еds.) V.V. Lemanov and G.A. Smolensky). Moscow: Mir; 1981. 736 p. (in Russ.). Lines M.E., Glass A.M. Principles and application of ferroelectrics and related materials. Oxford: Clarendom Press; 1977. 680 p.

17. Burfoot J., Taylor J. Polyarnye dielektriki i ikh primeneniya: per. s angl.; pod red. L.A. Shuvalova (Polar dielectrics and their applications: trans. from English; (Ed.) L.A. Shuvalov. Moscow: Mir; 1981. 526 p. (in Russ.). Burfoot J., Taylor J. Polar dielectrics and their applications. London: Macmillan Press; 1979. 480 p.

18. Wu S.Y. A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor. IEEE Trans. Electron Devices. 1974;21(8):499-504. https://doi.org/10.1109/T-ED.1974.17955

19. Zhang K. Embedded memories for nano-scale VLSIs. N.Y.: Springer; 2009. 400 p. ISBN 978-0-387-88497-4

20. Izyumskaya N., Alivov Ya., Morkoç H. Oxides, oxides, and more oxides: high-κ oxides, ferroelectrics, ferromagnetics, and multiferroics. Crit. Rev. Solid State Mater. Sci. 2009;34(3-4):89-179. https://doi.org/10.1080/10408430903368401

21. Izyumskaya N., Alivov Y-I., Cho S.-J., Morkoç H., Lee H., Kang Y.-S. Processing, Structure, Properties, and Applications of PZT Thin Films. Crit. Rev. Solid State Mater. Sci. 2007;32(3):111-202. https://doi.org/10.1080/10408430701707347

22. Setter N., Damjanovic D., Eng L., Fox G., Gevorgian S., Hong S., Kingon A., Kohlstedt H., Park N.Y., Stephenson G.B., Stolitchnov I., Taganstev A.K., Taylor D.V., Yamada T., Streiffer S. Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 2006;100(5):051606. https://doi.org/10.1063/1.2336999

23. Eom C.B., Trolier-McKinstry S. Thin-film piezoelectric MEMS. MRS Bulletin. 2012;37(11):1007-1021.

24. Panda P.K., Sahoo B. PZT to Lead Free Piezo Ceramics: A Review. Ferroelectrics. 2015;474(1):128-143. https://doi.org/10.1080/00150193.2015.997146

25. Mousharraf A. Is PZT an environment friendly piezoelectric material? Materials Today;2012. https://www.materialstoday.com/characterization/comment/is-pzt-an-environment-friendly-piezoelectric-mater/

26. Siddiqi M.A. Dynamic RAM: Technology Advancements. N.Y.: CRC Press; 2012. 382 p. ISBN 9781138077058

27. Kim S.K., Lee S.W., Han J.H., Lee B., Han S.W., Hwang C.S. Capacitors with an equivalent oxide thickness of <0.5 nm for nanoscale electronic semiconductor memory. Adv. Funct. Mater. 2010;20(18):2989- 3003. https://doi.org/10.1002/adfm.201000599

28. Mironenko I.G., Ivanov A.A., Karmanenko S.F., Semenov A.A., Nazarov I.A. Segnetoelektricheskie plenki i ustroistva na sverkh- i kraine vysokikh chastotakh (Ferroelectric Films and Devices at Super- and Extremely High Frequencies). Sankt-Peterburg: Elmor; 2007. 162 p. (in Russ.).

29. Mukhortov Vas.M., Masychev S.I., Golovko Yu.I., Chub A.V., Mukhortov Vl.M. A phase shifter on a slot line loaded with varactors designed on the basis on nanodimensional films of barium-strontium titanate. J. Commun. Technol. El. 2007;52(11):1300-1304. https://doi.org/10.1134/S1064226907110150

30. Smolensky G.A., Isupov V.A., Agranovskaya A.I. New group of ferroelectrics (with layered structure) Part I. Fizika Tverdogo Tela = Solid state physics. 1959;1(1):169-170. (in Russ.).

31. Klee M., Mackens U., Pankert J., Brand W., Klee W. Science and technology of electroceramic thin films. O. Auciello and R. Waser (Eds.). Dordrecht: Kluwer Academic Publishers; 1995. 99 p.

32. Fujii E.; Uchiyama K. First 0.18 μm SBT-based embedded FeRAM technology with hydrogen damage free stacked cell structure. Integr. Ferroelectr. 2003;53(1):317-323. https://doi.org/10.1080/10584580390258246

33. Wouters D. J., Maes D., Goux L., Lisoni J. G., Paraschiv V., Johnson J. A., Schwitters M., Everaert J.-L., Boullart W., Schaekers M., Willegems M., Vander Meeren H., Haspeslagh L., Artoni C., Caputa C., Casella P., Corallo G., Russo G., Zambrano R., Monchoix H., Vecchio G., Van Autryve L. Integration of SrBi2Ta2O9 thin films for high density ferroelectric random access memory. J. Appl. Phys. 2006;100:051603. https://doi.org/10.1063/1.2337359

34. Lee S.-S., Noh K.-H., Kang H.-B., Hong S.-K., Yeom S.-J., Park Y.-J. Characterization of Hynix 16M FERAM adopted novel sensing scheme. Integr. Ferroelectr. 2003;53(1):343-351. https://doi.org/10.1080/10584580390258264

35. Böscke T.S., Müller J., Bräuhaus D., Schröder U., Böttger U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011;99:102903. https://doi.org/10.1063/1.3634052

36. Polakowski P., Müller J. Ferroelectricity in undoped hafnium oxide. Appl. Phys. Lett. 2015;106(23):232905. https://doi.org/10.1063/1.4922272

37. Mueller S., Mueller J., Singh A., Riedel S., Sundqvist J., Schroeder U., Mikolajick T. Incipient ferroelectricity in Al‐doped HfO2 thin films. Adv. Funct. Mater. 2012;22(11):2412-2417. https://doi.org/10.1002/adfm.201103119

38. Chernikova A.G., Kuzmichev D.S., Negrov D.V., Kozodaev M.G., Polyakov S.N., Markeev A.M. Ferroelectric properties of full plasma-enhanced ALD TiN/La: HfO2/TiN stacks. Appl. Phys. Lett. 2016;108(24):242905. https://doi.org/10.1063/1.4953787

39. Müller J., Böscke T.S., Bräuhaus D., Schröder U., Böttger U., Sundqvist J., Kücher P., Mikolajick T., Frey L. Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications. Appl. Phys. Lett. 2011;99(11):112901. https://doi.org/10.1063/1.3636417

40. Starschich S., Schenk T., Schroeder U., Boettger U. Ferroelectric and piezoelectric properties of Hf1-xZrxO2 and pure ZrO2 films. Appl. Phys. Lett. 2017;110(18):182905. https://doi.org/10.1063/1.4983031

41. Sang X., Grimley E.D., Schenk T., Schroeder U., LeBeau J.M. On the structural origins of ferroelectricity in HfO2 thin films. Appl. Phys. Lett. 2015;106(16):162905. https://doi.org/10.1063/1.4919135

42. Fan Z., Chen J., Wang J. Ferroelectric HfO2-based materials for next-generation ferroelectric memories. J. Adv. Dielectrics. 2016;6(2):1630003-11. https://doi.org/10.1142/S2010135X16300036

43. Park M.H., Lee Y.H., Kim H.J., Kim Y.J., Moon T., Kim K.D., Müller J., Kerch A., Schroeder U., Mikolajick T., Hwang, C.S. Ferroelectricity and Antiferroelectricity of Doped Thin HfO2‐Based Films. Adv. Mater. 2015;27(11):1811-1831. https://doi.org/10.1002/adma.201404531

44. Petrovsky V.I., Sigov A.S., Vorotilov K.A. Microelectronic applications of ferroelectric films. Integr. Ferroelectr. 1993;3(1):59-68. https://doi.org/10.1080/10584589308216700

45. Kawashima S., Cross J.S. FeRAM. In: (Ed.) K. Zhang. Embedded Memories for Nano-Scale VLSIs. N.Y.: Springer; 2009. P. 279-328. https://doi.org/10.1007/978-0-387-88497-4_8

46. ITRS Reports – International Technology Roadmap for Semiconductors. URL: https://www.semiconductors.org/wp-content/uploads/2018/06/0_2015-ITRS-2.0-Executive-Report-1.pdf (date of the application 18.08.2020).

47. Arimoto Y., Ishiwara H. Current status of ferroelectric random-access memory. MRS Bulletin. 2004;29(11):823-828. https://doi.org/10.1557/mrs2004.235

48. McAdams H.P., Acklin R., Blake T., Du X. H., Eliason J., Fong J., Kraus W.F., Liu D., Madan S., Moise T., Natarajan S., Qian N., Qiu Y., Ramack K.A., Rodriguez J., Roscher J., Seshadri A., Summerfelt S.R. A 64-Mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process. IEEE J. Solid-State Circ. 2004;39(4):667-677. https://doi.org/10.1109/JSSC.2004.825241

49. Moise T.S., Summerfelt S.R., McAdams H., Aggarwal S., Udayakumar K.R., Celii F.G., Martin J.S., Xing G., Hall L., Taylor K.J., Hurd T., Rodriguez J., Remack K., Khan M.D., Boku K., Stacey G., Yao M., Albrecht M.G., Zielinski E., Thakre M., Kuchimanchi S., Thomas A., McKee B., Rickes J., Wang A., Grace J., Fong J., Lee D., Pietrzyk C., Lanham R., Gilbert S.R., Taylor D., Amano J., Bailey R., Chu F., Fox G., Sun S., Davenport T. Demonstration of a 4 Mb, high density ferroelectric memory embedded within a 130 nm, 5 LM Cu/FSG logic process. In: International Electron Devices Meeting (IEDM'02). 2002. P. 535-538. https://doi.org/10.1109/IEDM.2002.1175897

50. Müller J., Polakowski P., Mueller S., Mikolajick T. Ferroelectric hafnium oxide based materials and devices: Assessment of current status and future prospects. J. Solid State Sci. Technol. 2015;4(5):N30-N35. http://dx.doi.org/10.1149/2.0081505jss

51. Muller J., Boscke T. S., Muller S., Yurchuk E., Polakowski P., Paul J., Martin D., Schenk T., Khullar K., Kersch A., Weinreich W., Riedel S., Seidel K., Kumar A., Arruda T. M., Kalinin S. V., Schlosser T., Boschke R., van Bentum R., Schroder U., Mikolajick T. Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. In: Electron Devices Meeting (IEDM). 2013 IEEE International. 2013. P. 10.8.1-10.8.4. https://doi.org/10.1109/IEDM.2013.6724605

52. Koo J.M., Seo B.S., Kim S., Shin S., Lee J.H., Baik H., Lee J.H., Lee J.H., Bae B.J., Lim J.E., Yoo D. Ch.,Park S.O., Kim H.S., Han H., Baik S., Choi Y.J., Park Y.J., Park Y. Fabrication of 3D trench PZT capacitors for 256Mbit FRAM device application. In: IEEE International Electron Devices Meeting-2005. IEDM Technical Digest. 4 р. https://doi.org/10.1109/IEDM.2005.1609345

53. Rodriguez J.A., Remack K., Boku K., Udayakumar K.R., Aggarwal S., Summerfelt S.R., Celii F.G., Martin S., Hall L., Taylor K., Moise T., McAdams H., McPherson J., Bailey R., Fox G., Depner M. Reliability properties of low- voltage ferroelectric capacitors and memory arrays. IEEE T. Device Mat. Re. 2004;4(3):436-449. https://doi.org/10.1109/TDMR.2004.837210

54. Kim K., Lee S. Integration of lead zirconium titanate thin films for high density ferroelectric random access memory. J. Appl. Phys. 2006;100(5):051604. https://doi.org/10.1063/1.2337361

55. Park Y., Lee J.H., Koo J.M., Kim S.P., Shin S., Cho Ch. R., Lee J.K. Preparation of Pb(ZrxTi1-x)O3 films on trench structure for high-density ferroelectric random access memory. Integr. Ferroelectr. 2004;66(1):85-95. https://doi.org/10.1080/10584580490894771

56. Shin S., Han H., Park Y.J., Choi J.Y., Park Y., Baik S. Characterization of 3D Trench PZT Capacitors for High Density FRAM Devices by Synchrotron X‐ray Micro‐diffraction. In: AIP Conference Proceedings. 2007;879(1):1554-1556. https://doi.org/10.1063/1.2436361

57. Zhou Z., Bowland C.C., Patterson B.A., Malakooti M.H., Sodano H.A. Conformal BaTiO3 films with high piezoelectric coupling through an optimized hydrothermal synthesis. ACS Appl. Mater. Inter. 2016;8(33):21446-21453. https://doi.org/10.1021/acsami.6b05700

58. Polakowski P., Riedel S., Weinreich W., Rudolf M., Sundqvist J., Seidel K., Muller J. Ferroelectric deep trench capacitors based on Al:HfO2 for 3D nonvolatile memory applications. In: 2014 IEEE 6th International Memory Workshop (IMW). 2014. 4 p. https://doi.org/10.1109/IMW.2014.6849367

59. Müller J., Böscke T. S., Schröder U., Mueller S., Bräuhaus D., Böttger U., Frey L., Mikolajick, T. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 2012;12(8):4318-4323. https://doi.org/10.1021/nl302049k

60. Schroeder U., Yurchuk E., Müller J., Martin D., Schenk T., Polakowski P., Adelmann C., Popovici M.I., Kalinin S.V., Mikolajick T. Impact of different dopants on the switching properties of ferroelectric hafniumoxide. Jpn. J. Appl. Phys. 2014;53(8S1):08LE02. http://dx.doi.org/10.7567/JJAP.53.08LE02

61. Zarubin S., Suvorova E., Spiridonov M., Negrov D., Chernikova A., Markeev A., Zenkevich A. Fully ALD- grown TiN/Hf0.5Zr0.5O2/TiN stacks: Ferroelectric and structural properties. Appl. Phys. Lett. 2016;109(19):192903. https://doi.org/10.1063/1.4966219

62. IMEC demonstrates breakthrough in CMOS-compatible Ferroelectric Memory. URL: https://www.imec-int.com/en/articles/imec-demonstrates-breakthrough-in-cmos-compatible-ferroelectric-memory (date of the application 03.05.2020).

63. Lapedus M. A New Memory Contender? Semiconductor Engineering. URL: https://semiengineering.com/a-new-memory-contender/ (date of the application 16.05.2020).

64. Müller J., Yurchuk E., Schlösser T., Paul J., Hoffmann R., Müller S., Martin D., Slesazeck S., Polakowski P., Sundqvist J., Czernohorsky M. Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG. In: VLSI Technology (VLSIT) Symposium on IEEE. 2012. P. 25-26. https://doi.org/10.1109/VLSIT.2012.6242443

65. Yurchuk E., Müller J., Paul J., Schlösser T., Martin D., Hoffmann R., Müller S., Slesazeck S., Schröder U., Boschke R., van Bentum R. Impact of scaling on the performance of HfO2-based ferroelectric field effect transistors. IEEE Transactions on Electron Devices. 2014;61(11):3699-3706. https://doi.org/10.1109/TED.2014.2354833

66. Pešić M., Schroeder U., Mikolajick T. Ferroelectric One Transistor/One Capacitor Memory Cell. In book: (Eds.). Schroeder U., Hwang C., Funakubo H. Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices. Woodhead Publishing Series in Electronic and Optical Materials, 2019. P. 413-424. https://doi.org/10.1016/B978-0-08-102430-0.00019-X

67. Zhou D., Xu J., Li Q., Guan Y., Cao F., Dong X., Müller J., Schenk T., Schröder U. Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl. Phys. Lett. 2013;103(19):192904. https://doi.org/10.1063/1.4829064

68. Park M., Lee Y., Mikolajick T., Schroeder U., Hwang C. Review and perspective on ferroelectric HfO2-based thin films for memory applications. MRS Communications. 2018;8(3):795-808. https://doi.org/10.1557/mrc.2018.175

69. Pešić M., Fengler F.P., Slesazeck S., Schroeder U., Mikolajick T., Larcher L., Padovani A. Root cause of degradation in novel HfO2-based ferroelectric memories. In: IEEE International Reliability Physics Symposium (IRPS). 2016. P. MY-3-1-MY-3-5. https://doi.org/10.1109/IRPS.2016.7574619

70. Chernikova A.G., Kozodaev M.G., Negrov D.V., Korostylev E.V., Park M.H., Schroeder U., Hwang Ch.S., Markeev A.M. Improved ferroelectric switching endurance of La-doped Hf0.5Zr0.5O2 thin films. ACS Appl. Mater. Interfaces. 2018;10(3):2701-2708. https://doi.org/10.1021/acsami.7b15110

71. Delimova L., Guschina E., Zaitseva N., Pavlov S., Seregin D., Vorotilov K., Sigov A. Effect of seed layer with low lead content on electrical properties of PZT thin films. J. Mater. Res. 2017;32(9):1618-1627. https://doi.org/10.1557/jmr.2017.156

72. Park J.H., Kim H.Y., Seok K.H., Kiaee Z., Lee S.K., Joo S.K. Multibit ferroelectric field-effect transistor with epitaxial-like Pb(Zr, Ti)O3. J. Appl. Phys. 2016;119(12):124108. https://doi.org/10.1063/1.4945002

73. Park J.H., Joo S.K. A Novel Metal-Ferroelectric-Insulator-Silicon FET With Selectively Nucleated Lateral Crystallized Pb (Zr,Ti)O3 and ZrTiO4 Buffer for Long Retention and Good Fatigue. IEEE Electron Device Letters. 2015;36(10):1033-1036. https://doi.org/10.1109/LED.2015.2472987

74. Pavlenko A.V., Stryukov D.V., Mukhortov V.M., Biryukov S.V. Structure and Polarization Relaxation of Ba0.5Sr0.5Nb2O6/(001)Si Films. Tech. Phys.= Russ. J. Appl. Phys. 2018;63(3);407-410. https://doi.org/10.1134/S1063784218030179

75. Stryukov D.V., Mukhortov V.M., Biryukov S.V., Golovko Yu. I. Field effect in metal-ferroelectric-semiconductor structure with multilayer ferroelectric. Nauka Yuga Rossii = Science in the South of Russia. 2017;13(1):18-24 (in Russ.). https://doi.org/10.23885/2500-0640-2017-13-1-18-24

76. Hu J. M., Chen L. Q., Nan C.W. Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv. Mater. 2016;28(1):15-39. https://doi.org/10.1002/adma.201502824

77. Magdău I.B., Liu X.-H., Kuroda M.A., Shaw T.M., Crain J., Solomon P.M., Newns D.M., Martyna G.J. The piezoelectronic stress transduction switch for very large-scale integration, low voltage sensor computation, and radio frequency applications. Appl. Phys. Lett. 2015;107(7):073505. https://doi.org/10.1063/1.4928681

78. Chang J.B., Miyazoe H., Copel M., Solomon P.M., Liu X.-H., Shaw T.M., Schrott A.G., Gignac L.M., Martyna G.J., Newns D.M. First realization of the piezoelectronicstress-based transduction device. Nanotechnology. 2015;26(37):375201. https://doi.org/10.1088/0957-4484/26/37/375201

79. Newns D., Elmegreen B., Liu X.H., Martyna G. A low-voltage high-speed electronic switch based on piezoelectric transduction. J. Appl. Phys. 2012;111(8):084509. https://doi.org/10.1063/1.4704391

80. Newns D.M., Elmegreen B.G., Liu X.H., Martyna G.J. High response piezoelectric and piezoresistive materials for fast, low voltage switching: simulation and theory of transduction physics at the nanometer-scale. Adv. Mater. 2012;24(27):3672-3677. https://doi.org/10.1002/adma.201104617

81. Newns D.M., Elmegreen B.G., Liu X.H., Martyna G.J. The piezoelectronic transistor: a nanoactuator-based post-CMOS digital switch with high speed and low power. MRS Bull. 2012;37(11):1071-1076. https://doi.org/10.1557/mrs.2012.267

82. Demonstaring a new low-voltage memory element. URL: https://www.petmem.eu/the-technology (date of the application 17.05.2020).

83. Sousanis A., Smet P.F., Poelman D. Samarium Monosulfide (SmS): Reviewing Properties and Applications. Materials. 2017;10(8):953. https://doi.org/10.3390/ma10080953

84. Beleanu A., Kiss J., Kreiner G., Köhler C., Müchler L., Schnelle W., Burkhardt U., Chadov S., Medvediev S., Ebke D., Felser C., Cordier G., Albert B., Hoser A., Bernardi F., Larkin T.I., Pröpper D., Boris A.V., Keimer B. Large resistivity change and phase transition in the antiferromagnetic semiconductors LiMnAs and LaOMnAs. Phys. Rev. B. 2013;88(18):184429. https://doi.org/10.1103/PhysRevB.88.184429

85. Solomon P.M., Bryce B., Keech R., Shaw T.M., Copel M., Hung L. W., Schrott A., Theis T.N., Haensch W., Rossangel S.M., Miyazone H., Shetty S. The PiezoElectronic switch: A path to low energy electronics. In: 2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S). IEEE. 2013. P. 1-2. https://doi.org/10.1109/E3S.2013.6705880

86. Zheng Y., Ni G.X., Toh C.T., Zeng M.G., Chen S.T., Yao, K., Özyilmaz B. Gate-controlled nonvolatile graphene-ferroelectric memory. Appl. Phys. Lett. 2009;94(16):163505. https://doi.org/10.1063/1.3119215

87. Doh Y.J., Yi G.C. Nonvolatile memory devices based on few-layer graphene films. Nanotechnology. 2010;21(10):105204. https://doi.org/10.1088/0957-4484/21/10/105204

88. Xie L., Chen X., Dong Z., Yu Q., Zhao X., Yuan G., Zeng Zh., Wang Y., Zhang, K. Nonvolatile Photoelectric Memory Induced by Interfacial Charge at a Ferroelectric PZT‐Gated Black Phosphorus Transistor. Adv. Electron. Mater. 2019;5(8):1900458. https://doi.org/10.1002/aelm.201900458

89. Shen P.C., Lin C., Wang H., Teo K.H., Kong J. Ferroelectric memory field-effect transistors using CVD monolayer MoS2 as resistive switching channel. Appl. Phys. Lett. 2020;116(3):033501. https://doi.org/10.1063/1.5129963

90. McGuire F.A., Lin Y.C., Price K., Rayner G.B., Khandelwal S., Salahuddin S., Franklin A.D. Sustained sub-60 mV/decade switching via the negative capacitance effect in MoS2 transistors. Nano Lett. 2017;17(8):4801-4806. https://doi.org/10.1021/acs.nanolett.7b01584

91. Alam M.A., Si M., Ye P.D. A critical review of recent progress on negative capacitance field-effect transistors. Appl. Phys. Lett. 2019;114(9):090401. https://doi.org/10.1063/1.5092684

92. Stadler H.L. Ferroelectric switching time of BaTiO3 crystals at high voltages. J. App. Phys. 1958;29(10):1485-1487. https://doi.org/10.1063/1.1722973

93. Scott J.F., McMillan L.D., Araujo C.A. Switching kinetics of lead zirconate titanate sub-micron thin-film memories. Ferroelectrics. 1989;93(1):31-36. https://doi.org/10.1080/00150198908017317

94. Li J., Nagaraj B., Liang H., Cao W., Lee C.H., Ramesh R. Ultrafast polarization switching in thin-film ferroelectrics. Appl. Phys. Lett. 2004;84(7):1174-1176. https://doi.org/10.1063/1.1644917

95. Ishii H., Nakajima T., Takahashi Y., Furukawa T. Ultrafast polarization switching in ferroelectric polymer thin films at extremely high electric fields. Appl. Phys. Express. 2011;4(3):031501. https://doi.org/10.1143/APEX.4.031501

96. Mulaosmanovic H., Ocker J., Müller S., Schroeder U., Müller J., Polakowski P., Slesazeck S. Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors. ACS Appl. Mater. Interfaces. 2017;9(4):3792-3798. https://doi.org/10.1021/acsami.6b13866

97. Boni A.G., Chirila C., Pasuk I., Negrea R., Pintilie I., Pintilie L. Steplike Switching in Symmetric PbZr0.2Ti0.8O3/CoFeO4/PbZr0.2Ti0.8O3 Heterostructures for Multistate Ferroelectric Memory. Phys. Rev. Appled. 2017;8(3):034035. https://doi.org/10.1103/PhysRevApplied.8.034035

98. Liu Z.Q., Liu J.H., Biegalski M.D., Hu J. M., Shang S.L., Ji Y., Wang J.M., Hsu S.L., Wong A.T., Cordill M.J., Gludovatz B. Electrically reversible cracks in an intermetallic film controlled by an electric field. Nat. Commun. 2018;9(1):41. https://doi.org/10.1038/s41467-017-02454-8

99. Oh S., Hwang H., Yoo I. K. Ferroelectric materials for neuromorphic computing. APL Materials. 2019:7(9):091109-091109-14. https://doi.org/10.1063/1.5108562

100. Ishibashi Y., Takagi Y. Note on ferroelectric domain switching. J. Phys. Soc. JPN. 1971;31(2):506-510. https://doi.org/10.1143/JPSJ.31.506

101. Ishiwara H. Proposal of adaptive-learning neuron circuits with ferroelectric analog-memory weights. JPN. J. Appl. Phys. 1993;32(1S):442-446. https://doi.org/10.1143/JJAP.32.442

102. Jerry M., Dutta S., Kazemi A., Ni K., Zhang J., Chen, P. Y., Datta, S. A ferroelectric field effect transistor based synaptic weight cell. J. Phys. D: Appl. Phys. 2018;51(43):434001. https://doi.org/10.1088/1361-6463/aad6f8

103. Seo M., Kang M.H., Jeon S.B., Bae H., Hur J., Jang B.C., Hwang K.M. First demonstration of a logic-process compatible junctionless ferroelectric FinFET synapse for neuromorphic applications. IEEE Electr. Device Letters. 2018;39(9):1445-1448. https://doi.org/10.1109/LED.2018.2852698

104. Kim M.K., Lee J.S. Ferroelectric analog synaptic transistors. Nano Lett. 2019;19(3):2044-2050. https://doi.org/10.1021/acs.nanolett.9b00180

105. Boyn S., Grollier J., Lecerf G., Xu B., Locatelli N., Fusil S., Girod S., Carretero C., Garcia K., Xavier S., Tomas J., Bellaiche L., Bibes M., Barthelemy A., Saïghi S., Garcia V. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 2017;8(1):1-7. https://doi.org/10.1038/ncomms14736


Supplementary files

1. Abdullaev_Fig.2
Subject
Type Исследовательские инструменты
View (89KB)    
Indexing metadata ▾
State-of-the-art FRAM manufacturing is studied. Ferroelectric capacitors and memory cells made by main commercial FRAM manufactures (Texas Instruments, Cypress Semiconductor, Fujitsu, and Lapis Semiconductor) are explored. The leading FRAM technology remains the 130 nm node CMOS process developed at Texas Instruments fabs. New approaches to further scaling and new devices based on ferroelectrics are reviewed.

Review

For citations:


Abdullaev D.A., Milovanov R.A., Volkov R.L., Borgardt N.I., Lantsev A.N., Vorotilov K.A., Sigov A.S. Ferroelectric memory: state-of-the-art manufacturing and research. Russian Technological Journal. 2020;8(5):44-67. (In Russ.) https://doi.org/10.32362/2500-316X-2020-8-5-44-67

Views: 3091


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)