Сегнетоэлектрическая память: современное производство и исследования
https://doi.org/10.32362/2500-316X-2020-8-5-44-67
Аннотация
Ключевые слова
Об авторах
Д. А. АбдуллаевРоссия
Абдуллаев Даниил Анатольевич, кандидат технических наук, младший научный сотрудник Института нанотехнологий микроэлектроники РАН; стажер-исследователь НОЦ «Технологический центр» ФГБОУ ВО «МИРЭА – Российский технологический уни- верситет». ResearcherID: AAO-5932-2020; Scopus Author ID: 56741027200
119991, Москва, Ленинский проспект, д. 32А
119454, Москва, пр-т Вернадского, д. 78
Р. А. Милованов
Россия
Милованов Роман Александрович, кандидат технических наук, заместитель начальника физико-технологического отдела Института нанотехнологий микроэлектроники РАН; старший научный сотрудник УНО «Электроника» ФГБОУ ВО «МИРЭА – Российский технологический университет». Scopus Author ID: 55794840600
119991, Москва, Ленинский проспект, д. 32А
119454, Москва, пр-т Вернадского, д. 78
Р. Л. Волков
Россия
Волков Роман Леонидович, кандидат физико-математических наук, старший научный сотрудник научно-исследовательской лаборатории электронной микроскопии, старший преподаватель кафедры общей физики. ResearcherID: C-8431-2017; Scopus Author ID: 52564796300
124498, Москва, Зеленоград, Площадь Шокина, д. 1
Н. И. Боргардт
Россия
Боргардт Николай Иванович, доктор физико-математических наук, профессор, начальник научно-исследовательской лаборатории электронной микроскопии, руководитель Центра коллективного пользования «Диагностика и модификация микроструктур и нанообъектов», заведующий кафедры общей физики. ResearcherID: I-7869-2014; Scopus Author ID: 6603557021
124498, Москва, Зеленоград, Площадь Шокина, д. 1
А. Н. Ланцев
Россия
Ланцев Андрей Николаевич, генеральный директор
119330, Москва, ул. Дружбы, д. 10Б
К. А. Воротилов
МИРЭА – Российский технологический университет
Россия
Воротилов Константин Анатольевич, доктор технических наук, профессор, директор НОЦ «Технологический центр». ResearcherID A-3331-2011; Scopus Author ID: 7004711340
119454, Москва, пр-т Вернадского, д. 78
А. С. Сигов
МИРЭА – Российский технологический университет
Россия
Сигов Александр Сергеевич, академик РАН, президент. ResearcherID L-4103-2017; Scopus Author ID: 35557510600
119454, Москва, пр-т Вернадского, д. 78
Список литературы
1. Милованов Р.А., Келм Е.А. Структура ячеек энергонезависимой памяти типа EEPROM и Flash. Нано- и Микросистемная техника. 2015;4(177):45-59.
2. Defaÿ E. Ferroelectric dielectrics integrated on silicon. N.Y.: John Wiley & Sons, 2013. 448 p.
3. Воротилов К.А., Мухортов В.М., Сигов А.С. Интегрированные сегнетоэлектрические устройства. М.: Энергоатомиздат, 2011. 175 с. ISBN 978-5-283-00872-1
4. Воротилов К.А., Сигов А.С. Сегнетоэлектрические запоминающие устройства. Физика твердого тела. 2012;54(5):843-848.
5. Воротилов К.А., Сигов А.С. Сегнетоэлектрические запоминающие устройства: перспективные технологии и материалы. Нано- и Микросистемная техника. 2008;10(99):30-42.
6. Rodriguez J., Remack, K., Gertas, J., Wang L., Zhou C., Boku K., Rodriguez-Latorre J., Udayakuma, K.R., Summerfelt S., Moise T., Kim D., Groat J., Eliason J., Depner M., Chu F. Reliability of Ferroelectric Random Access memory embedded within 130nm CMOS. In: 2010 IEEE International Reliability Physics Symposium (IRPS). 2010. P. 750-758. https://doi.org/10.1109/IRPS.2010.5488738
7. FRAM Guide Book. 5th Edition. Fujitsu Lmtd. Electronic Devices. 2005. 57 p.
8. Meena J.S., Sze S.M., Chand U.Ch., Tseng T.-Y. Overview of emerging nonvolatile memory technologies. Nanoscale research letters. 2014;9(526):1-33. https://doi.org/10.1186/1556-276X-9-526
9. Emerging Non-Volatile Memories. Yole Developpement SARL. 2013. 16 p.
10. Emerging Memory (STT-MRAM, PCRAM, ReRAM, 3D XPointTM) Technology/Products Roadmap. TechInsights Inc. 2017. 12 p.
11. Handbook of Nanomagnetism: Applications and Tools, R.A. Lukaszew (Ed.)., New York , Taylor and Francis, 2015. 304 p. https://doi.org/10.1201/b18942
12. DRAM Technology/Products Roadmap. TechInsights Inc. 2017. 15 p.
13. Non-Volatile Ferroelectric Random Access Memory (FRAM). Fujitsu Lmtd. 2015. 5 p. https://www.fujitsu.com/us/Images/SPBG_FRAM_Overview_BR.pdf (дата обращения 18.08.2020)
14. Sayyah R., Macleod T.C., Ho F.D. Radiation-hardened electronics and ferroelectric memory for space flight systems. Ferroelectrics. 2011;413(1):170-175. https://doi.org/10.1080/00150193.2011.554145
15. Brewer S.J., Williams S.C., Griffin L.A., Cress C.D., Rivas M., Rudy R.Q., Polcawich R.G., Glaser E.R., Bassiri- Gharb N. Enhanced radiation tolerance in Mn-doped ferroelectric thin films. Appl. Phys. Lett. 2017;111(2):022906. https://doi.org/10.1063/1.4992791
16. Лайнс М., Гласс А. Сегнетоэлектрики и родственные материалы: пер. с англ.; под ред. В.В. Леманова и Г.А. Смоленского. М.: Мир, 1981. 736 c.
17. Барфут Дж., Тейлор Дж. Полярные диэлектрики и их применения: пер. с англ.; под ред. Л.А. Шувалова. М.: Мир, 1970. 526 c.
18. Wu S.Y. A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor. IEEE Trans. Electron Devices. 1974;21(8):499-504. https://doi.org/10.1109/T-ED.1974.17955
19. Zhang K. Embedded memories for nano-scale VLSIs. N.Y.: Springer; 2009. 400 p. ISBN 978-0-387-88497-4
20. Izyumskaya N., Alivov Ya., Morkoç H. Oxides, oxides, and more oxides: high-κ oxides, ferroelectrics, ferromagnetics, and multiferroics. Crit. Rev. Solid State Mater. Sci. 2009;34(3-4):89-179. https://doi.org/10.1080/10408430903368401
21. Izyumskaya N., Alivov Y-I., Cho S.-J., Morkoç H., Lee H., Kang Y.-S. Processing, Structure, Properties, and Applications of PZT Thin Films. Crit. Rev. Solid State Mater. Sci. 2007;32(3):111-202. https://doi.org/10.1080/10408430701707347
22. Setter N., Damjanovic D., Eng L., Fox G., Gevorgian S., Hong S., Kingon A., Kohlstedt H., Park N.Y., Stephenson G.B., Stolitchnov I., Taganstev A.K., Taylor D.V., Yamada T., Streiffer S. Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 2006;100(5):051606. https://doi.org/10.1063/1.2336999
23. Eom C.B., Trolier-McKinstry S. Thin-film piezoelectric MEMS. MRS Bulletin. 2012;37(11):1007-1021.
24. Panda P.K., Sahoo B. PZT to Lead Free Piezo Ceramics: A Review. Ferroelectrics. 2015;474(1):128-143. https://doi.org/10.1080/00150193.2015.997146
25. Mousharraf A. Is PZT an environment friendly piezoelectric material? Materials Today;2012. https://www.materialstoday.com/characterization/comment/is-pzt-an-environment-friendly-piezoelectric-mater/
26. Siddiqi M.A. Dynamic RAM: Technology Advancements. N.Y.: CRC Press; 2012. 382 p. ISBN 9781138077058
27. Kim S.K., Lee S.W., Han J.H., Lee B., Han S.W., Hwang C.S. Capacitors with an equivalent oxide thickness of <0.5 nm for nanoscale electronic semiconductor memory. Adv. Funct. Mater. 2010;20(18):2989- 3003. https://doi.org/10.1002/adfm.201000599
28. Мироненко И.Г., Иванов А.А., Карманенко С.Ф., Семенов А.А., Назаров И.А. Сегнетоэлектрические пленки и устройства на сверх- и крайне высоких частотах. СПб.: Элмор., 2007. 162 с.
29. Мухортов В.М., Масычев С.И., Головко Ю.И., Чуб А.В., Мухортов Вл.М. Фазовращатель на щелевой линии, нагруженной варакторами на основе наноразмерных пленок титаната бария-стронция. Радиотехника и электроника. 2007;52(11):1402-1406.
30. Смоленский Г.А., Исупов В.А., Аграновская А.И. Новая группа сегнетоэлектриков (со слоистой струк- турой) I. Физика твердого тела. 1959;1(1):169-170.
31. Klee M., Mackens U., Pankert J., Brand W., Klee W. Science and technology of electroceramic thin films. O. Auciello and R. Waser (Eds.). Dordrecht: Kluwer Academic Publishers; 1995. 99 p.
32. Fujii E.; Uchiyama K. First 0.18 μm SBT-based embedded FeRAM technology with hydrogen damage free stacked cell structure. Integr. Ferroelectr. 2003;53(1):317-323. https://doi.org/10.1080/10584580390258246
33. Wouters D. J., Maes D., Goux L., Lisoni J. G., Paraschiv V., Johnson J. A., Schwitters M., Everaert J.-L., Boullart W., Schaekers M., Willegems M., Vander Meeren H., Haspeslagh L., Artoni C., Caputa C., Casella P., Corallo G., Russo G., Zambrano R., Monchoix H., Vecchio G., Van Autryve L. Integration of SrBi2Ta2O9 thin films for high density ferroelectric random access memory. J. Appl. Phys. 2006;100:051603. https://doi.org/10.1063/1.2337359
34. Lee S.-S., Noh K.-H., Kang H.-B., Hong S.-K., Yeom S.-J., Park Y.-J. Characterization of Hynix 16M FERAM adopted novel sensing scheme. Integr. Ferroelectr. 2003;53(1):343-351. https://doi.org/10.1080/10584580390258264
35. Böscke T.S., Müller J., Bräuhaus D., Schröder U., Böttger U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011;99:102903. https://doi.org/10.1063/1.3634052
36. Polakowski P., Müller J. Ferroelectricity in undoped hafnium oxide. Appl. Phys. Lett. 2015;106(23):232905. https://doi.org/10.1063/1.4922272
37. Mueller S., Mueller J., Singh A., Riedel S., Sundqvist J., Schroeder U., Mikolajick T. Incipient ferroelectricity in Al‐doped HfO2 thin films. Adv. Funct. Mater. 2012;22(11):2412-2417. https://doi.org/10.1002/adfm.201103119
38. Chernikova A.G., Kuzmichev D.S., Negrov D.V., Kozodaev M.G., Polyakov S.N., Markeev A.M. Ferroelectric properties of full plasma-enhanced ALD TiN/La: HfO2/TiN stacks. Appl. Phys. Lett. 2016;108(24):242905. https://doi.org/10.1063/1.4953787
39. Müller J., Böscke T.S., Bräuhaus D., Schröder U., Böttger U., Sundqvist J., Kücher P., Mikolajick T., Frey L. Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications. Appl. Phys. Lett. 2011;99(11):112901. https://doi.org/10.1063/1.3636417
40. Starschich S., Schenk T., Schroeder U., Boettger U. Ferroelectric and piezoelectric properties of Hf1-xZrxO2 and pure ZrO2 films. Appl. Phys. Lett. 2017;110(18):182905. https://doi.org/10.1063/1.4983031
41. Sang X., Grimley E.D., Schenk T., Schroeder U., LeBeau J.M. On the structural origins of ferroelectricity in HfO2 thin films. Appl. Phys. Lett. 2015;106(16):162905. https://doi.org/10.1063/1.4919135
42. Fan Z., Chen J., Wang J. Ferroelectric HfO2-based materials for next-generation ferroelectric memories. J. Adv. Dielectrics. 2016;6(2):1630003-11. https://doi.org/10.1142/S2010135X16300036
43. Park M.H., Lee Y.H., Kim H.J., Kim Y.J., Moon T., Kim K.D., Müller J., Kerch A., Schroeder U., Mikolajick T., Hwang, C.S. Ferroelectricity and Antiferroelectricity of Doped Thin HfO2‐Based Films. Adv. Mater. 2015;27(11):1811-1831. https://doi.org/10.1002/adma.201404531
44. Petrovsky V.I., Sigov A.S., Vorotilov K.A. Microelectronic applications of ferroelectric films. Integr. Ferroelectr. 1993;3(1):59-68. https://doi.org/10.1080/10584589308216700
45. Kawashima S., Cross J.S. FeRAM. In: (Ed.) K. Zhang. Embedded Memories for Nano-Scale VLSIs. N.Y.: Springer; 2009. P. 279-328. https://doi.org/10.1007/978-0-387-88497-4_8
46. ITRS Reports – International Technology Roadmap for Semiconductors. URL: https://www.semiconductors.org/wp-content/uploads/2018/06/0_2015-ITRS-2.0-Executive-Report-1.pdf (date of the application 18.08.2020).
47. Arimoto Y., Ishiwara H. Current status of ferroelectric random-access memory. MRS Bulletin. 2004;29(11):823-828. https://doi.org/10.1557/mrs2004.235
48. McAdams H.P., Acklin R., Blake T., Du X. H., Eliason J., Fong J., Kraus W.F., Liu D., Madan S., Moise T., Natarajan S., Qian N., Qiu Y., Ramack K.A., Rodriguez J., Roscher J., Seshadri A., Summerfelt S.R. A 64-Mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process. IEEE J. Solid-State Circ. 2004;39(4):667-677. https://doi.org/10.1109/JSSC.2004.825241
49. Moise T.S., Summerfelt S.R., McAdams H., Aggarwal S., Udayakumar K.R., Celii F.G., Martin J.S., Xing G., Hall L., Taylor K.J., Hurd T., Rodriguez J., Remack K., Khan M.D., Boku K., Stacey G., Yao M., Albrecht M.G., Zielinski E., Thakre M., Kuchimanchi S., Thomas A., McKee B., Rickes J., Wang A., Grace J., Fong J., Lee D., Pietrzyk C., Lanham R., Gilbert S.R., Taylor D., Amano J., Bailey R., Chu F., Fox G., Sun S., Davenport T. Demonstration of a 4 Mb, high density ferroelectric memory embedded within a 130 nm, 5 LM Cu/FSG logic process. In: International Electron Devices Meeting (IEDM'02). 2002. P. 535-538. https://doi.org/10.1109/IEDM.2002.1175897
50. Müller J., Polakowski P., Mueller S., Mikolajick T. Ferroelectric hafnium oxide based materials and devices: Assessment of current status and future prospects. J. Solid State Sci. Technol. 2015;4(5):N30-N35. http://dx.doi.org/10.1149/2.0081505jss
51. Muller J., Boscke T. S., Muller S., Yurchuk E., Polakowski P., Paul J., Martin D., Schenk T., Khullar K., Kersch A., Weinreich W., Riedel S., Seidel K., Kumar A., Arruda T. M., Kalinin S. V., Schlosser T., Boschke R., van Bentum R., Schroder U., Mikolajick T. Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. In: Electron Devices Meeting (IEDM). 2013 IEEE International. 2013. P. 10.8.1-10.8.4. https://doi.org/10.1109/IEDM.2013.6724605
52. Koo J.M., Seo B.S., Kim S., Shin S., Lee J.H., Baik H., Lee J.H., Lee J.H., Bae B.J., Lim J.E., Yoo D. Ch.,Park S.O., Kim H.S., Han H., Baik S., Choi Y.J., Park Y.J., Park Y. Fabrication of 3D trench PZT capacitors for 256Mbit FRAM device application. In: IEEE International Electron Devices Meeting-2005. IEDM Technical Digest. 4 р. https://doi.org/10.1109/IEDM.2005.1609345
53. Rodriguez J.A., Remack K., Boku K., Udayakumar K.R., Aggarwal S., Summerfelt S.R., Celii F.G., Martin S., Hall L., Taylor K., Moise T., McAdams H., McPherson J., Bailey R., Fox G., Depner M. Reliability properties of low- voltage ferroelectric capacitors and memory arrays. IEEE T. Device Mat. Re. 2004;4(3):436-449. https://doi.org/10.1109/TDMR.2004.837210
54. Kim K., Lee S. Integration of lead zirconium titanate thin films for high density ferroelectric random access memory. J. Appl. Phys. 2006;100(5):051604. https://doi.org/10.1063/1.2337361
55. Park Y., Lee J.H., Koo J.M., Kim S.P., Shin S., Cho Ch. R., Lee J.K. Preparation of Pb(ZrxTi1-x)O3 films on trench structure for high-density ferroelectric random access memory. Integr. Ferroelectr. 2004;66(1):85-95. https://doi.org/10.1080/10584580490894771
56. Shin S., Han H., Park Y.J., Choi J.Y., Park Y., Baik S. Characterization of 3D Trench PZT Capacitors for High Density FRAM Devices by Synchrotron X‐ray Micro‐diffraction. In: AIP Conference Proceedings. 2007;879(1):1554-1556. https://doi.org/10.1063/1.2436361
57. Zhou Z., Bowland C.C., Patterson B.A., Malakooti M.H., Sodano H.A. Conformal BaTiO3 films with high piezoelectric coupling through an optimized hydrothermal synthesis. ACS Appl. Mater. Inter. 2016;8(33):21446-21453. https://doi.org/10.1021/acsami.6b05700
58. Polakowski P., Riedel S., Weinreich W., Rudolf M., Sundqvist J., Seidel K., Muller J. Ferroelectric deep trench capacitors based on Al:HfO2 for 3D nonvolatile memory applications. In: 2014 IEEE 6th International Memory Workshop (IMW). 2014. 4 p. https://doi.org/10.1109/IMW.2014.6849367
59. Müller J., Böscke T. S., Schröder U., Mueller S., Bräuhaus D., Böttger U., Frey L., Mikolajick, T. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 2012;12(8):4318-4323. https://doi.org/10.1021/nl302049k
60. Schroeder U., Yurchuk E., Müller J., Martin D., Schenk T., Polakowski P., Adelmann C., Popovici M.I., Kalinin S.V., Mikolajick T. Impact of different dopants on the switching properties of ferroelectric hafniumoxide. Jpn. J. Appl. Phys. 2014;53(8S1):08LE02. http://dx.doi.org/10.7567/JJAP.53.08LE02
61. Zarubin S., Suvorova E., Spiridonov M., Negrov D., Chernikova A., Markeev A., Zenkevich A. Fully ALD- grown TiN/Hf0.5Zr0.5O2/TiN stacks: Ferroelectric and structural properties. Appl. Phys. Lett. 2016;109(19):192903. https://doi.org/10.1063/1.4966219
62. IMEC demonstrates breakthrough in CMOS-compatible Ferroelectric Memory. URL: https://www.imec-int.com/en/articles/imec-demonstrates-breakthrough-in-cmos-compatible-ferroelectric-memory (date of the application 03.05.2020).
63. Lapedus M. A New Memory Contender? Semiconductor Engineering. URL: https://semiengineering.com/a-new-memory-contender/ (date of the application 16.05.2020).
64. Müller J., Yurchuk E., Schlösser T., Paul J., Hoffmann R., Müller S., Martin D., Slesazeck S., Polakowski P., Sundqvist J., Czernohorsky M. Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG. In: VLSI Technology (VLSIT) Symposium on IEEE. 2012. P. 25-26. https://doi.org/10.1109/VLSIT.2012.6242443
65. Yurchuk E., Müller J., Paul J., Schlösser T., Martin D., Hoffmann R., Müller S., Slesazeck S., Schröder U., Boschke R., van Bentum R. Impact of scaling on the performance of HfO2-based ferroelectric field effect transistors. IEEE Transactions on Electron Devices. 2014;61(11):3699-3706. https://doi.org/10.1109/TED.2014.2354833
66. Pešić M., Schroeder U., Mikolajick T. Ferroelectric One Transistor/One Capacitor Memory Cell. In book: (Eds.). Schroeder U., Hwang C., Funakubo H. Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices. Woodhead Publishing Series in Electronic and Optical Materials, 2019. P. 413-424. https://doi.org/10.1016/B978-0-08-102430-0.00019-X
67. Zhou D., Xu J., Li Q., Guan Y., Cao F., Dong X., Müller J., Schenk T., Schröder U. Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl. Phys. Lett. 2013;103(19):192904. https://doi.org/10.1063/1.4829064
68. Park M., Lee Y., Mikolajick T., Schroeder U., Hwang C. Review and perspective on ferroelectric HfO2-based thin films for memory applications. MRS Communications. 2018;8(3):795-808. https://doi.org/10.1557/mrc.2018.175
69. Pešić M., Fengler F.P., Slesazeck S., Schroeder U., Mikolajick T., Larcher L., Padovani A. Root cause of degradation in novel HfO2-based ferroelectric memories. In: IEEE International Reliability Physics Symposium (IRPS). 2016. P. MY-3-1-MY-3-5. https://doi.org/10.1109/IRPS.2016.7574619
70. Chernikova A.G., Kozodaev M.G., Negrov D.V., Korostylev E.V., Park M.H., Schroeder U., Hwang Ch.S., Markeev A.M. Improved ferroelectric switching endurance of La-doped Hf0.5Zr0.5O2 thin films. ACS Appl. Mater. Interfaces. 2018;10(3):2701-2708. https://doi.org/10.1021/acsami.7b15110
71. Delimova L., Guschina E., Zaitseva N., Pavlov S., Seregin D., Vorotilov K., Sigov A. Effect of seed layer with low lead content on electrical properties of PZT thin films. J. Mater. Res. 2017;32(9):1618-1627. https://doi.org/10.1557/jmr.2017.156
72. Park J.H., Kim H.Y., Seok K.H., Kiaee Z., Lee S.K., Joo S.K. Multibit ferroelectric field-effect transistor with epitaxial-like Pb(Zr, Ti)O3. J. Appl. Phys. 2016;119(12):124108. https://doi.org/10.1063/1.4945002
73. Park J.H., Joo S.K. A Novel Metal-Ferroelectric-Insulator-Silicon FET With Selectively Nucleated Lateral Crystallized Pb (Zr,Ti)O3 and ZrTiO4 Buffer for Long Retention and Good Fatigue. IEEE Electron Device Letters. 2015;36(10):1033-1036. https://doi.org/10.1109/LED.2015.2472987
74. Pavlenko A.V., Stryukov D.V., Mukhortov V.M., Biryukov S.V. Structure and Polarization Relaxation of Ba0.5Sr0.5Nb2O6/(001)Si Films. Tech. Phys.= Russ. J. Appl. Phys. 2018;63(3);407-410. https://doi.org/10.1134/S1063784218030179
75. Стрюков Д.В., Мухортов В.М., Бирюков С.В., Головко Ю.И. Эффект поля в структуре металл – сег- нетоэлектрик – полупроводник с использованием многослойного сегнетоэлектрика. Наука Юга России. 2017;13(1):18-24. https://doi.org/10.23885/2500-0640-2017-13-1-18-24
76. Hu J. M., Chen L. Q., Nan C.W. Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv. Mater. 2016;28(1):15-39. https://doi.org/10.1002/adma.201502824
77. Magdău I.B., Liu X.-H., Kuroda M.A., Shaw T.M., Crain J., Solomon P.M., Newns D.M., Martyna G.J. The piezoelectronic stress transduction switch for very large-scale integration, low voltage sensor computation, and radio frequency applications. Appl. Phys. Lett. 2015;107(7):073505. https://doi.org/10.1063/1.4928681
78. Chang J.B., Miyazoe H., Copel M., Solomon P.M., Liu X.-H., Shaw T.M., Schrott A.G., Gignac L.M., Martyna G.J., Newns D.M. First realization of the piezoelectronicstress-based transduction device. Nanotechnology. 2015;26(37):375201. https://doi.org/10.1088/0957-4484/26/37/375201
79. Newns D., Elmegreen B., Liu X.H., Martyna G. A low-voltage high-speed electronic switch based on piezoelectric transduction. J. Appl. Phys. 2012;111(8):084509. https://doi.org/10.1063/1.4704391
80. Newns D.M., Elmegreen B.G., Liu X.H., Martyna G.J. High response piezoelectric and piezoresistive materials for fast, low voltage switching: simulation and theory of transduction physics at the nanometer-scale. Adv. Mater. 2012;24(27):3672-3677. https://doi.org/10.1002/adma.201104617
81. Newns D.M., Elmegreen B.G., Liu X.H., Martyna G.J. The piezoelectronic transistor: a nanoactuator-based post-CMOS digital switch with high speed and low power. MRS Bull. 2012;37(11):1071-1076. https://doi.org/10.1557/mrs.2012.267
82. Demonstaring a new low-voltage memory element. URL: https://www.petmem.eu/the-technology (date of the application 17.05.2020).
83. Sousanis A., Smet P.F., Poelman D. Samarium Monosulfide (SmS): Reviewing Properties and Applications. Materials. 2017;10(8):953. https://doi.org/10.3390/ma10080953
84. Beleanu A., Kiss J., Kreiner G., Köhler C., Müchler L., Schnelle W., Burkhardt U., Chadov S., Medvediev S., Ebke D., Felser C., Cordier G., Albert B., Hoser A., Bernardi F., Larkin T.I., Pröpper D., Boris A.V., Keimer B. Large resistivity change and phase transition in the antiferromagnetic semiconductors LiMnAs and LaOMnAs. Phys. Rev. B. 2013;88(18):184429. https://doi.org/10.1103/PhysRevB.88.184429
85. Solomon P.M., Bryce B., Keech R., Shaw T.M., Copel M., Hung L. W., Schrott A., Theis T.N., Haensch W., Rossangel S.M., Miyazone H., Shetty S. The PiezoElectronic switch: A path to low energy electronics. In: 2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S). IEEE. 2013. P. 1-2. https://doi.org/10.1109/E3S.2013.6705880
86. Zheng Y., Ni G.X., Toh C.T., Zeng M.G., Chen S.T., Yao, K., Özyilmaz B. Gate-controlled nonvolatile graphene-ferroelectric memory. Appl. Phys. Lett. 2009;94(16):163505. https://doi.org/10.1063/1.3119215
87. Doh Y.J., Yi G.C. Nonvolatile memory devices based on few-layer graphene films. Nanotechnology. 2010;21(10):105204. https://doi.org/10.1088/0957-4484/21/10/105204
88. Xie L., Chen X., Dong Z., Yu Q., Zhao X., Yuan G., Zeng Zh., Wang Y., Zhang, K. Nonvolatile Photoelectric Memory Induced by Interfacial Charge at a Ferroelectric PZT‐Gated Black Phosphorus Transistor. Adv. Electron. Mater. 2019;5(8):1900458. https://doi.org/10.1002/aelm.201900458
89. Shen P.C., Lin C., Wang H., Teo K.H., Kong J. Ferroelectric memory field-effect transistors using CVD monolayer MoS2 as resistive switching channel. Appl. Phys. Lett. 2020;116(3):033501. https://doi.org/10.1063/1.5129963
90. McGuire F.A., Lin Y.C., Price K., Rayner G.B., Khandelwal S., Salahuddin S., Franklin A.D. Sustained sub-60 mV/decade switching via the negative capacitance effect in MoS2 transistors. Nano Lett. 2017;17(8):4801-4806. https://doi.org/10.1021/acs.nanolett.7b01584
91. Alam M.A., Si M., Ye P.D. A critical review of recent progress on negative capacitance field-effect transistors. Appl. Phys. Lett. 2019;114(9):090401. https://doi.org/10.1063/1.5092684
92. Stadler H.L. Ferroelectric switching time of BaTiO3 crystals at high voltages. J. App. Phys. 1958;29(10):1485-1487. https://doi.org/10.1063/1.1722973
93. Scott J.F., McMillan L.D., Araujo C.A. Switching kinetics of lead zirconate titanate sub-micron thin-film memories. Ferroelectrics. 1989;93(1):31-36. https://doi.org/10.1080/00150198908017317
94. Li J., Nagaraj B., Liang H., Cao W., Lee C.H., Ramesh R. Ultrafast polarization switching in thin-film ferroelectrics. Appl. Phys. Lett. 2004;84(7):1174-1176. https://doi.org/10.1063/1.1644917
95. Ishii H., Nakajima T., Takahashi Y., Furukawa T. Ultrafast polarization switching in ferroelectric polymer thin films at extremely high electric fields. Appl. Phys. Express. 2011;4(3):031501. https://doi.org/10.1143/APEX.4.031501
96. Mulaosmanovic H., Ocker J., Müller S., Schroeder U., Müller J., Polakowski P., Slesazeck S. Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors. ACS Appl. Mater. Interfaces. 2017;9(4):3792-3798. https://doi.org/10.1021/acsami.6b13866
97. Boni A.G., Chirila C., Pasuk I., Negrea R., Pintilie I., Pintilie L. Steplike Switching in Symmetric PbZr0.2Ti0.8O3/CoFeO4/PbZr0.2Ti0.8O3 Heterostructures for Multistate Ferroelectric Memory. Phys. Rev. Appled. 2017;8(3):034035. https://doi.org/10.1103/PhysRevApplied.8.034035
98. Liu Z.Q., Liu J.H., Biegalski M.D., Hu J. M., Shang S.L., Ji Y., Wang J.M., Hsu S.L., Wong A.T., Cordill M.J., Gludovatz B. Electrically reversible cracks in an intermetallic film controlled by an electric field. Nat. Commun. 2018;9(1):41. https://doi.org/10.1038/s41467-017-02454-8
99. Oh S., Hwang H., Yoo I. K. Ferroelectric materials for neuromorphic computing. APL Materials. 2019:7(9):091109-091109-14. https://doi.org/10.1063/1.5108562
100. Ishibashi Y., Takagi Y. Note on ferroelectric domain switching. J. Phys. Soc. JPN. 1971;31(2):506-510. https://doi.org/10.1143/JPSJ.31.506
101. Ishiwara H. Proposal of adaptive-learning neuron circuits with ferroelectric analog-memory weights. JPN. J. Appl. Phys. 1993;32(1S):442-446. https://doi.org/10.1143/JJAP.32.442
102. Jerry M., Dutta S., Kazemi A., Ni K., Zhang J., Chen, P. Y., Datta, S. A ferroelectric field effect transistor based synaptic weight cell. J. Phys. D: Appl. Phys. 2018;51(43):434001. https://doi.org/10.1088/1361-6463/aad6f8
103. Seo M., Kang M.H., Jeon S.B., Bae H., Hur J., Jang B.C., Hwang K.M. First demonstration of a logic-process compatible junctionless ferroelectric FinFET synapse for neuromorphic applications. IEEE Electr. Device Letters. 2018;39(9):1445-1448. https://doi.org/10.1109/LED.2018.2852698
104. Kim M.K., Lee J.S. Ferroelectric analog synaptic transistors. Nano Lett. 2019;19(3):2044-2050. https://doi.org/10.1021/acs.nanolett.9b00180
105. Boyn S., Grollier J., Lecerf G., Xu B., Locatelli N., Fusil S., Girod S., Carretero C., Garcia K., Xavier S., Tomas J., Bellaiche L., Bibes M., Barthelemy A., Saïghi S., Garcia V. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 2017;8(1):1-7. https://doi.org/10.1038/ncomms14736
Дополнительные файлы
|
1. Abdullaev_Fig.2 | |
Тема | ||
Тип | Исследовательские инструменты | |
Посмотреть
(89KB)
|
Метаданные ▾ |
Рецензия
Для цитирования:
Абдуллаев Д.А., Милованов Р.А., Волков Р.Л., Боргардт Н.И., Ланцев А.Н., Воротилов К.А., Сигов А.С. Сегнетоэлектрическая память: современное производство и исследования. Russian Technological Journal. 2020;8(5):44-67. https://doi.org/10.32362/2500-316X-2020-8-5-44-67
For citation:
Abdullaev D.A., Milovanov R.A., Volkov R.L., Borgardt N.I., Lantsev A.N., Vorotilov K.A., Sigov A.S. Ferroelectric memory: state-of-the-art manufacturing and research. Russian Technological Journal. 2020;8(5):44-67. (In Russ.) https://doi.org/10.32362/2500-316X-2020-8-5-44-67