Dynamic programming in applied tasks which are allowing to reduce the options selection
https://doi.org/10.32362/2500-316X-2020-8-4-96-111
Abstract
About the Authors
D. A. KarpovRussian Federation
Dmitry A. Karpov, Cand. Sci. (Engineering), Head of the Department of General Informatics of the Institute of Cybernetics
78, Vernadskogo pr., Moscow 119454
V. I. Struchenkov
Russian Federation
Valeriy I. Struchenkov, Dr. Sci. (Engineering), Professor of the Department of General Informatics of the Institute of Cybernetics
78, Vernadskogo pr., Moscow 119454
References
1. Bellman R. Dinamicheskoe programmirovanie (Dynamic programming). Moscow: Inostrannaya literatura Publ., 1960. 402 p. (in Russ.).
2. Lyakhovskii V.N., Mikhalevich V.S., Bykov V.I. Determination on the computer of the most advantageous position of the red line of the longitudinal profile on the free run. Transportnoe stroitel'stvo = Transport Construction. 1962;4:41-43.
3. Mikhalevich V.S., Shor N.Z. The mathematical foundations of solving the problem of choosing the optimal outline of the longitudinal profile. Trudy Vsesoyuznogo NII transportnogo stroitel'stva = Proceedings of the Institute of Transport Construction. 1964;51:12-24 (in Russ.).
4. Mikhalevich V.S. Sequential optimization algorithms and their application. Kibernetika. 1965;1:45-56 (in Russ.).
5. Mikhalevich V.S., Bykov V.I., Sibirko A.N. To the question of designing the optimal longitudinal profile of the road. Transportnoe stroitel'stvo = Transport Construction. 1975;6:39-40 (in Russ.).
6. Kosmin V.V., Struchenkov V.I., Fradkov E.B. Computeraided longitudinal road profile design. Transportnoe stroitel'stvo = Transport Construction. 1971;4:38-42 (in Russ.).
7. Bellman R., Dreifus S. Prikladnye zadachi dinamicheskogo programmirovaniya (Applied problems of dynamic programming). Moscow: Nauka; 1965. 460 p. (in Russ.).
8. Lezhnev A.V. Dinamicheskoe programmirovanie v ekonomicheskikh zadachakh (Dynamic programming in economic problems). Moscow: Binom; 2016. 176 p.
9. Kremer N.Sh. Issledovanie operatsii v ekonomike (The study of operations in the economy). Moscow: Yurait; 2012. 430 р. ISBN 978-5-9916-1849-6
10. Cavagnari G., Marigonda A., Piccoli B. Generalized dynamic programming principle and sparse meanfield control problems. J. Math. Anal. Appl. 2020;481(1): Article No. 123437. https://doi.org/10.1016/j.jmaa.2019.123437
11. Ramahatana F., David M. Economic optimization of micro-grid operations by dynamic programming with real energy forecast. J. Phys. Conf. 2019;1343(1): Article No. 012067. https://doi.org/10.1088/1742-6596/1343/1/012067
12. Firdausiyah N., Taniguchi E., Qureshi A.G. Impacts of Urban Consolidation Centres for Sustainable City Logistics Using Adaptive Dynamic Programming Based MultiAgent Simulation. In: IOP Conference Series: Earth and Environmental Science. 2019;328(1): Article No. 012071. https://doi.org/10.1088/1755-315/328/1/012071
13. He S., Shin H.-S., Tsourdos A. Computational guidance using sparse Gauss-Hermite quadrature differential dynamic programming. IFAC-PapersOnLine. 2019;52(12):13-18. https://doi.org/10.1016/j.ifacol.2019.11.062
14. He S., Guo S., Chen, K., Deng L., Liao Z., Xiong F., Yin J. Dataset for reservoir impoundment operation coupling parallel dynamic programming with importance sampling and successive approximation. Data in Brief. 2019;26: Article No. 104440. https://doi.org/10.1016/j.dib.2019.104440
15. Fayaed S.S., Fiyadh S.S., Khai W.J., Ahmed A.N., Afan H.A., Ibrahim R.K. Improving dam and reservoir operation rules using stochastic dynamic programming and artificial neural network integration model. Sustainability. 2019;11(19):5367. https://doi.org/10.3390/su11195367
16. Işik H., Sintunavarat W. An investigation of the common solutions for coupled systems of functional equations arising in dynamic programming. Mathematics. 2019;7(10):977. https://doi.org/10.3390/math7100977
17. Jia S., Sun J.Q., Ding Q. Flutter Control of a Two-dimensional Airfoil based on Adaptive Dynamic Programming. In: IOP Conference Series: Materials Science and Engineering. 2019;531(1): Article No. 012033. https://doi.org/10.1088/1757-899X/531/1/012033
18. Kozlowski K.M., Sharma G.K., Chen J.J., Qi L., Osann K., Jing J.C., Ahuja G.S. Dynamic programming and automated segmentation of optical coherence tomography images of the neonatal subglottis: Enabling efficient diagnostics to manage subglottic stenosis. J. Biomed. Opt. 2019;24(9):096001. https://doi.org/10.1117/1.JBO.24.9.096001
19. Durdán, M., Kačur, J., Laciak, M., Flegner, P. Thermophysical properties estimation in annealing process using the iterative dynamic programming method and gradient method. Energies. 2019;12(17):3267. https://doi.org/10.3390/en12173267
20. Wang P., Peng Y., Gao X.-J., Gao H.-H. Train Speed Trajectory Optimization using Dynamic Programming with speed modes decomposition. In: IOP Conference Series: Materials Science and Engineering. 2019;569(4):042019. https://doi.org/10.1088/1757-899X/569/4/042019
21. Ikeda S. Ooka, R. Comparison of metaheuristics and dynamic programming for district energy optimization. In: IOP Conference Series: Earth and Environmental Science. 2019:294(1):9. https://doi.org/10.1088/1755-1315/294/1/012040
22. Narendra Kumar P.V., Chengaiah C., Prasad J.V.K. Fuzzy dynamic programming based solarthermal load scheduling of Andhra Pradesh power generation using Matlab. International Journal of Recent Technology and Engineering (IJRTE). 2019;8(2S8):1242-1247. https://doi.org/10.35940/ijrte.B1046.0882S819
23. Karpov D.A., Struchenkov V.I. Dynamic Programming as a Method of Spline Approxi-mation in the CAD Systems of Linear Constructions. Rossiiskii tekhnologicheskii zhurnal = Russian Technological Journal. 2019;7(3):77-88 (in Russ.). https://doi.org/10.32362/2500-316X-2019-7-3-77-88
24. Romanovskii I.V. Diskretnyi analiz (Discrete analysis). St. Petersburg: Nevskii Dialekt, BKhV–Peterburg; 2003. 320 р. (in Russ.). ISBN 5-7940-0114-3
25. Venttsel՚ E.S. Issledovanie operatsii: zadachi, printsipy, metodologiya (Operations research: tasks, principles, methodology). Moscow: KnoRus; 2010. 191 р. (in Russ.). ISBN 978-5-406-00682-5
26. Kosorukov O.A., Mishchenko A.V. Issledovanie operatsii: Uchebnik dlya vuzov (Operations Research). Moscow: Ekzamen; 2013. 445 p. (in Russ.). ISBN 5-94692-363-3
27. Struchenkov V.I. The use of parabolic splinees in CAD of linear structures. Rossiiskii tekhnologicheskii zhurnal = Russian Technological Journal. 2018;6(1):40-52 (in Russ.). https://doi.org/10.32362/2500-316X-2018-6-1-40-52
A new dynamic programming algorithm to implement the search of the optimal trajectory to reject hopeless states and all variants of paths emanating from them was proposed and realized.
As a result of the analysis, it was shown that the comparative efficiency of the algorithm with rejection of states increases with increasing dimension of the problem. So, in the problem of the optimal choice of items for loading a vehicle of a given carrying capacity with a number of items of 150, the number of memorized states and the counting time are reduced by 50 and 57 times, respectively, when using the new algorithm compared to the classical algorithm of R. Bellman.Review
For citations:
Karpov D.A., Struchenkov V.I. Dynamic programming in applied tasks which are allowing to reduce the options selection. Russian Technological Journal. 2020;8(4):96-111. (In Russ.) https://doi.org/10.32362/2500-316X-2020-8-4-96-111