Preview

Russian Technological Journal

Advanced search

Review of modern models and methods of analysis of time series of dynamics of processes in social, economic and socio-technical systems

https://doi.org/10.32362/2500-316X-2020-8-4-7-45

Abstract

The directions of perspective research in the field of analysis and modeling of the dynamics of time series of processes in complex systems with the presence of the human factor are described. The dynamics of processes in such systems is described by nonstationary time series. Predicting the evolution of such systems is of great importance for managing processes in social (election campaigns), economic (stock, futures and commodity markets) and socio-technical systems (social networks). The general information on time series and tasks of their analysis is given. Modern methods of time series analysis for economic processes are considered. The results show that economic processes cannot be considered completely random, since they tend to self-organize and, moreover, are subject to the influence of memory of previous states. It was revealed that one of the main tasks in modeling processes in sociotechnical systems (for example, social networks) is the development of a mathematical apparatus for bringing data to a single measurement scale. The modern models of analysis and forecasting of electoral processes based on the analysis of time series: structural, polling, hybrid. Based on the analysis, their advantages and disadvantages are considered. In conclusion, it was concluded that to describe processes in complex systems with the presence of the human factor, in addition to traditional factors, it is necessary to develop and use methods and tools to take into account the possibility of self-organization of human groups and the presence of memory about previous states of the system.

About the Authors

E. G. Andrianova
MIREA – Russian Technological University
Russian Federation

Elena G. Andrianova, Cand. Sci. (Engineering), Associated Professor, Associate Professor of the Department of ERP, IT Institute. Scopus Author ID: 57200555430

78, Vernadskogo pr., Moscow 119454



S. A. Golovin
MIREA – Russian Technological University
Russian Federation

Sergey A. Golovin, Dr. Sci. (Engineering), Professor, Head of Department of Mathematical Support and Standardization of Information Technologies, IT Institute

78, Vernadskogo pr., Moscow 119454



S. V. Zykov
NRU "Higher School of Economics"
Russian Federation

Sergey V. Zykov, Dr. Sci. (Engineering), Associated Professor, Professor of School of Software Engineering of Faculty of Computer Science. Scopus Author ID: 36146486900

20, Myasnitskaya ul., Moscow 101000



S. A. Lesko
MIREA – Russian Technological University
Russian Federation

Sergey A. Lesko, Cand. Sci. (Engineering), Associate Professor of the Department «Management and Modeling of Systems», Institute of Integrated Security and Special Instrumentation. Scopus Author ID: 57189664364

78, Vernadskogo pr., Moscow 119454



E. R. Chukalina
MIREA – Russian Technological University
Russian Federation

Ekaterina R. Chukalina, student, IT Institute

78, Vernadskogo pr., Moscow 119454



References

1. Avzalova E.I. Internet Communication in the US Election Campaign. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya «Politologiya. Religiovedenie» = The Bulletin of Irkutsk State University». Series «Political Science and Religion Studies». 2017;22:185-194 (in Russ.).

2. Course D. Israeli Parliamentary Elections 2015: Causes, Results and Trends. June 8, 2015. Institute of the Middle East. G. http://www.iimes.ru/?p=24736 (in Russ.).

3. Rodin A. Sky network: why the new Mask project is a challenge for Russia. February 17, 2018 RBC. Opinion. [Electronic resource]. https://www.rbc.ru/opinions/technology_and_media/17/02/2018/5a86a1559a79473fe79a5813 (in Russ.).

4. Boks D., Dzhenkins G. Analiz vremennykh ryadov. Prognoz i upravlenie (Time Series Analysis. Forecast and management). Moscow: Mir; 1974. 248 p. (in Russ.). [Box D., Dzhenkins G. Time Series Analysis: Forecasting and Control. San Francisco: Hold-en-Day; 1970.]

5. Lʼyuis K.D. Metody prognozirovaniya ekonomicheskikh pokazatelei (Methods of forecasting economic indicators). Moscow: Finansy i statistika; 1986. 130 p. (in Russ.).

6. Borovkov A.A. Matematicheskaya statistika (Mathematical statistics). Moscow: Fizmatlit; 2007. 704 p. (in Russ.) ISBN 978-5-94052-141-X

7. Kendall M., Styuart A. Statisticheskie vyvody i svyazi (Statistical conclusions and relationships). Moscow: Nauka; 1973. 900 p. (in Russ.).

8. Kendall M., Styuart A. Mnogomernyi statisticheskii analiz i vremennye ryady (Multidimensional statistical analysis and time series). Moscow: Nauka; 1976. 736 p. (in Russ.). [Kendall M.G., Stuart A. The advanced theory of statistics (London)]

9. Uilks S. Matematicheskaya statistika (Mathematical statistics). Мoscow: Nauka; 1967. 632 p. (in Russ.).

10. Kobzar' A.I. Prikladnaya matematicheskaya statistika (Applied Mathematical Statistics). Moscow: Fizmatlit; 2006. 816 p. (in Russ.). ISBN 5-9221-0707-0

11. Kagan A.M., Linnik Yu.V., Rao S.R. Kharakterizatsionnye zadachi matematicheskoi statistiki (Characterization problems of mathematical statistics). Moscow: Nauka; 1972. 248 p. (in Russ.).

12. Foster F.G., Stuart A. A distribution-free test in time series dated on the breaking of records. JRSS. 1954;B16(1):1-22. https://doi.org/10.1111/j.2517-6161.1954.tb00143.x

13. Orlov Yu.N., Shagov D.O. Indicative statistics for non-stationary time series. Preprinty IPM im. M. V. Keldysha = Keldysh Institute preprints. 2011;053:20 (in Russ.).

14. Gnedenko B.V. Kurs teorii veroyatnostei (Probability theory course). Moscow: Fizmatlit, 1961. 406 p. (in Russ.)

15. Shugai Yu.S. Neural network algorithms for predicting events and searching for precursors in multidimensional time series. Iskusstvennyi intellect = Artificial. 2004;2,:211-215 (in Russ.).

16. Ermakov S.M. Metod Monte-Karlo i smezhnye voprosy (Monte Carlo method and related issues). Moscow: Nauka; 1975. 471 p. (in Russ.).

17. Ermakov S.M., Mikhailov G.A. Statisticheskoe modelirovanie (Statistical Modeling). Moscow: Nauka; 1982. 296 p. (in Russ.).

18. Kozhevnikov A.S. The software for statistical modeling and analysis of random processes with jumps, which describe the stock price dynamics of aircraft industry. Trudy MAI. 2012;59:230-242 (in Russ.).

19. Khadjeh Nassirtoussi A., Ying Wah T., Ngo Chek Ling D. A novel FOREX prediction methodology based on fundamental data. Afr. J. Bus. Manag. 2011;5(20):8322-8330. https://doi.org/10.5897/AJBM11.798

20. Anastasakis L., Mort N. Exchange rate forecasting using a combined parametric and non-parametric selforganising modelling approach. Expert Sys. Appl. 2009;36(10):12001-12011. https://doi.org/10.1016/j.eswa.2009.03.057

21. Vanstone B., Finnie G. Enhancing stockmarket trading performance with ANNs. Expert Sys. Appl. 2010;37(9):6602-6610. https://doi.org/10.1016/j.eswa.2010.02.124

22. Vanstone B., Finnie G. An empirical methodology for developing stockmarket trading systems using artificial neural networks. Expert Sys. Appl. 2009;36(3):6668-6680. https://doi.org/10.1016/j.eswa.2008.08.019

23. Sermpinis G., Laws J., Karathanasopoulos A., Dunis C. L. Forecasting and trading the EUR/ USD exchange rate with gene expression and psi sigma neural networks. Expert Sys. Appl. August 2012;39(10):8865-8877. https://doi.org/10.1016/j.eswa.2012.02.022

24. Huang S.-C., Chuang P.-J., Wu C.-F., Lai H.-J. Chaos-based support vector regressions for exchange rate forecasting. Expert Sys. Appl. 2010;37(12):8590-8598. https://doi.org/10.1016/j.eswa.2010.06.001

25. Premanode B., Toumazou C. Improving prediction of exchange rates using differential EMD. Expert Sys. Appl. 2013;40(1):377-384. https://doi.org/10.1016/j.eswa.2012.07.048

26. Bahrepour M., Akbarzadeh T. M-R., Yaghoobi M., Naghibi S. M.-B. An adaptive ordered fuzzy time series with application to FOREX. Expert Sys. Appl. 2011;38(1):475-485. https://doi.org/10.1016/j.eswa.2010.06.087

27. Mabu S., Hirasawa K., Obayashi M., Kuremoto T. Enhanced decision making mechanism of rule-based genetic network programming for creating stock trading signals. Expert Sys. Appl. 2013;40(16):6311-6320. https://doi.org/10.1016/j.eswa.2013.05.037

28. Orlov Yu.N., Osminin K.P. Nestatsionarnye vremennye ryady: metody prognozirovaniya s primerami analiza finansovykh i syr'evykh rynkov (Unsteady time series: forecasting methods with examples of analysis of financial and commodity markets). Moscow: LIBROKOM, 2011. 384 p. (in Russ.). ISBN 978-5-397-071272-7

29. Orlov Yu.N., Fedorov S.L. Nonstationary time series trajectories generation on the basis of the Fokker–Planck equation. TRUDY MFTI = Trudy MIPT. 2016;8(2):126–133 (in Russ.).

30. Fuentes M. Non-Linear Diffusion and Power Law Properties of Heterogeneous Systems: Application to Financial Time Series. Entropy. 2018;20(9):649. https://doi.org/10.3390/e20090649

31. Gunawardana A., Meek C., Xu P. A Model for Temporal Dependencies in Event Streams. Microsoft Research. 2011. 8 p. https://www.microsoft.com/en-us/research/publication/a-model-for-temporal-dependencies-in-event-streams/

32. Suraj Singh Chouhan, Ravi Khatri. Data Mining based Technique for Natural Event Prediction and Disaster Management. International Journal of Computer Applications (IJCA). 2016;139(14):34-39. https://doi.org/10.5120/ijca2016909102

33. Radinsky K., Horvitz E. Mining the Web to Predict Future Events. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining. ACM. 2013. P. 255-264. https://doi.org/10.1145/2433396.2433431

34. Chatrath A., Miao H., Ramchander S., & Villupuram S. Currency jumps, cojumps and the role of macro news. J. Int. Money Financ. February 2014;40:42-62. https://doi.org/10.1016/j.jimonfin.2013.08.018

35. Huang C.-J., Liao J.-J., Yang D.-X., Chang T.-Y., & Luo Y.-C. Realization of a news dissemination agent based on weighted association rules and text mining techniques. Expert Sys. Appl. 2010;37(9):6409-6413. https://doi.org/10.1016/j.eswa.2010.02.078

36. Robertson C., Geva S., & Wolff R. What types of events provide the strongest evidence that the stock market is affected by company specific news? In: Proc. Fifth Australasian Data mining conference (AusDM2006). 2006;61:145-153.

37. Preethi P.G., Uma V., Ajit Kumar. Temporal Sentiment Analysis and Causal Rules Extraction from Tweets for Event Prediction. Procedia Computer Science. 2015;48:84-89. https://doi.org/10.1016/j.procs.2015.04.154

38. Gerber M.S. Predicting crime using Twitter and kernel density estimation. Decis. Support Syst. 2014;61(1):115-125. https://doi.org/10.1016/j.dss.2014.02.003

39. Kveid E. Analiz slozhnykh system (Analysis of complex systems). Moscow: Sovetskoe radio; 1969. 512 p. (in Russ.).

40. Baskakova Yu.M., Demin A.A., Lashuk N.E., Terent՚eva N.N. Amerikanskie praktiki elektoral՚nogo prognozirovaniya. Doklad po rezul'tatam issledovaniya VTsIOM (American practices of electoral forecasting. Report on the results of a VTsIOM study). Moscow: OAO «Vserossiiskii tsentr izucheniya obshchestvennogo mneniya»; 2016. 40 p. (in Russ). ISBN 978-5-9905970-5-1

41. Materialy kruglogo stola Obshchestvennoi palaty RF «Matematika na sluzhbe izbiratelei», Press-sluzhba Obshchestvennoi palaty RF (Materials of the round table of the Public Chamber of the Russian Federation “Mathematics in the Service of Voters”, Press Service of the Public Chamber of the Russian Federation). [Electronic resource]: https://www.oprf.ru/press/news/2018/newsitem/44277 (in Russ.).

42. Tolstova Yu.N. Mathematical Modeling of Social Processes and Sociology. Sotsiologicheskie issledovaniya = Sociological Studies. 2018;9:104-112 (in Russ.). https://doi.org/10.31857/S013216250001965-4

43. Tolstova Yu.N. Correlation of Theoretical and Empirical Knowledge when Using Mathematical Methods in Sociological Research. Sotsiologicheskie issledovaniya = Sociological Studies.2018;12:39-48 (in Russ.). https://doi.org/10.31857/S013216250003164-3

44. Walther D. Picking the winner(s): Forecasting elections in multiparty systems. Elect. Stud. December 2015;40:1-13. https://doi.org/10.1016/j.electstud.2015.06.003

45. Kryshtanovskii A.O. The Russian population's attitude toward the president's activities. Russian Politics & Law. 1995;33(6):61-68. https://doi.org/10.2753/RUP1061-1940330661

46. Kryshtanovskii A. Methods of time series analysis. Monitoring obshchestvennogo mneniya: ekonomicheskie i sotsial'nye peremeny = Public Opinion Monitoring: Economic and Social Change. 2000;2(46):44-51 (in Russ.).

47. Kryshtanovskii A.O. “Clusters on factors” is about one common misconception. Sotsiologiya: Metodologiya, metody, matematicheskie modeli (4M) = Sociology: Methodology, Methods, Mathematical Modeling (4M). 2005;21:172187 (in Russ.).

48. Kryshtanovskii A.O. Limitations of the regression analysis method. Sotsiologiya: Metodologiya, metody, matematicheskie modeli (4M) = Sociology: Methodology, Methods, Mathematical Modeling (4M). 2000;12:96-112 (in Russ.).

49. Bonica A.A., Rosenthal H.B., Rothman D.J.C. The political polarization of physicians in the United States: An analysis of campaign contributions to federal elections, 1991 through 2012. JAMA Internal Medicine. 2014;174(8):1308-1317. https://doi.org/10.1001/jamainternmed.2014.2105

50. Panagopoulos C. The dynamics of voter preferences in the 2010 congressional midterm elections. Forum. 2010;8(4):Article number 9. https://doi.org/10.2202/1540-8884.1402

51. Churov V.E., Arlazarov V.L., Solov՚ev A.V. Election Results. Analysis of Electoral Preferences. Trudy Instituta sistemnogo analiza rossiyskoy akademii nauk = Proceeding of the Institute for Systems Analysis of the Russian Academy of Science. 2008;38:6-22 (in Russ.).

52. Foucault M., Nadeau R. Forecasting the 2012 French Presidential Election. PS: Political Science & Politics. April 2012;45(2):218-222. https://doi.org/10.1017/S1049096512000066

53. Healy A., Lenz G.S. Substituting the end for the whole: Why voters respond primarily to the election-year economy. American Journal of Political Science. January 2014;58(1):31-47. https://doi.org/10.1111/ajps.12053

54. Gormley I.C., Murphy T.B. A grade of membership model for rank data. Bayesian Analysis. 2009;4(2):265-296. https://doi.org/10.1214/09-BA410

55. Doktorov B. Glavnaya problema Obamy – ne respublikancy, no ekonomika (Analitiki izbiratel'noj kampanii aktivno izuchayut proshloe dlya predskazaniya budushchego) (The main problem of Obama is not in the Republicans, but in the economy (Campaign analysts are actively studying the past to predict the future). 11 Sept. 2011. [Electronic Resource]: https://fom.ru/special/kto-stanet-prezidentom-ssha/10161

56. Erikson R.S.A., Panagopoulos C.B., Wlezien C.D. Likely (and unlikely) voters and the assessment of campaign dynamics. Public Opin. Quart. 2004;68(4):588-601. https://doi.org/10.1093/poq/nfh041

57. Dassonneville R. Electoral volatility, political sophistication, trust and efficacy: A study on changes in voter preferences during the Belgian regional elections of 2009. Acta Politica. 2012;47(1):18-41. https://doi.org/10.1057/ap.2011.19

58. Dewan T.A., Shepsle K.A.B. Political economy models of elections. Annu. Rev. Polit. Sci. 2011;14(1):311-330. https://doi.org/10.1146/annurev.polisci.12.042507.094704

59. Mundim P.S. The press and the vote in the 2002 and 2006 Brazilian presidential campaigns [Imprensa e voto nas eleições presidenciais Brasileiras de 2002 e 2006]. Revista de Sociologia e Politica. 2012;20(41):123-147. https://doi.org/10.1590/S0104-44782012000100009

60. Hillygus S.D. The evolution of election polling in the United States. Public Opin. Quart. 2011;75(5):962-981. https://doi.org/10.1093/poq/nfr054

61. Cassino D. How Today's Political Polling Works. Harvard Business Review. August, 2016. [Electronic Resource]: https://hbr.org/2016/08/how-todays-political-polling-works

62. Wright Fred A., Wright Alec A. How surprising was Trump՚s victory? Evaluations of the 2016 U.S. presidential election and a new poll aggregation model. Electoral Studies. August 2018;54:81-89. https://doi.org/10.1016/j.electstud.2018.05.001

63. Erikson R.S., Wlezien C. Forecasting the Presidential Vote with Leading Economic Indicators and the Polls. PS: Political Science & Politics. October 2016;49:669-672. https://doi.org/10.1017/S1049096516001293

64. Kennedy C., Blumenthal M., Clement S., Clinton J.D., Durand C., Franklin C., McGeeney K. An Evaluation of the 2016 Election Polls in the United States. Public Opin. Quart. March 2018;82(1):1-33. https://doi.org/10.1093/poq/nfx047

65. Fisher S.D., Ford R., Jennings W., Pickup M., Wlezien C. From polls to votes to seats: Forecasting the 2010 British general election. Electoral Studies. June 2011;30(2):250-257. https://doi.org/10.1016/j.electstud.2010.09.005

66. Linzer D.A. Dynamic Bayesian forecasting of presidential elections in the states. J. Am. Stat. Assoc. 2013;108(501):124-134. https://doi.org/10.1080/01621459.2012.737735

67. Walther D., Hellström J. The verdict in the polls: how government stability is affected by popular support. West European Politics. 2019;42(3):593-617. https://doi.org/10.1080/01402382.2018.1490598

68. Belenky A.S., Kingc D.C. A mathematical model for estimating the potential margin of state undecided voters for a candidate in a US Federal election. Math. Comput. Model. March 2007;45(5-6):585-593. https://doi.org/10.1016/j.mcm.2006.07.007

69. Norpoth H., Gschwend T. The chancellor model: Forecasting German elections. Int. J. Forecasting. JanuaryMarch 2010;26(1):42-53. https://doi.org/10.1016/j.ijforecast.2009.02.008

70. Montalvo J.G., Papaspiliopoulos O., Stumpf-Fétizon T. Bayesian Forecasting of Electoral Outcomes with new Partiesʼ Competition. Barcelona Graduate School of Economics. Working Papers 1065. February 4, 2019. https://ideas.repec.org/p/bge/wpaper/1065.html


The directions of perspective research in the field of analysis and modeling of the dynamics of time series of processes in complex systems with the presence of the human factor are analyzed. The dynamics of processes in such systems is described by non-stationary time series. Predicting the evolution of such systems is of great importance for managing processes in social (election campaigns), economic (stock, futures and commodity markets) and sociotechnical systems (social networks).

It was concluded that to describe processes in complex systems with the presence of the human factor, in addition to traditional factors, it is necessary to develop and use methods and tools to take into account the possibility of self-organization of human groups and the presence of memory about previous states of the system.

Review

For citations:


Andrianova E.G., Golovin S.A., Zykov S.V., Lesko S.A., Chukalina E.R. Review of modern models and methods of analysis of time series of dynamics of processes in social, economic and socio-technical systems. Russian Technological Journal. 2020;8(4):7-45. (In Russ.) https://doi.org/10.32362/2500-316X-2020-8-4-7-45

Views: 2174


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)