Review of modern models and methods of analysis of time series of dynamics of processes in social, economic and socio-technical systems
https://doi.org/10.32362/2500-316X-2020-8-4-7-45
Abstract
About the Authors
E. G. AndrianovaRussian Federation
Elena G. Andrianova, Cand. Sci. (Engineering), Associated Professor, Associate Professor of the Department of ERP, IT Institute. Scopus Author ID: 57200555430
78, Vernadskogo pr., Moscow 119454
S. A. Golovin
Russian Federation
Sergey A. Golovin, Dr. Sci. (Engineering), Professor, Head of Department of Mathematical Support and Standardization of Information Technologies, IT Institute
78, Vernadskogo pr., Moscow 119454
S. V. Zykov
Russian Federation
Sergey V. Zykov, Dr. Sci. (Engineering), Associated Professor, Professor of School of Software Engineering of Faculty of Computer Science. Scopus Author ID: 36146486900
20, Myasnitskaya ul., Moscow 101000
S. A. Lesko
Russian Federation
Sergey A. Lesko, Cand. Sci. (Engineering), Associate Professor of the Department «Management and Modeling of Systems», Institute of Integrated Security and Special Instrumentation. Scopus Author ID: 57189664364
78, Vernadskogo pr., Moscow 119454
E. R. Chukalina
Russian Federation
Ekaterina R. Chukalina, student, IT Institute
78, Vernadskogo pr., Moscow 119454
References
1. Avzalova E.I. Internet Communication in the US Election Campaign. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya «Politologiya. Religiovedenie» = The Bulletin of Irkutsk State University». Series «Political Science and Religion Studies». 2017;22:185-194 (in Russ.).
2. Course D. Israeli Parliamentary Elections 2015: Causes, Results and Trends. June 8, 2015. Institute of the Middle East. G. http://www.iimes.ru/?p=24736 (in Russ.).
3. Rodin A. Sky network: why the new Mask project is a challenge for Russia. February 17, 2018 RBC. Opinion. [Electronic resource]. https://www.rbc.ru/opinions/technology_and_media/17/02/2018/5a86a1559a79473fe79a5813 (in Russ.).
4. Boks D., Dzhenkins G. Analiz vremennykh ryadov. Prognoz i upravlenie (Time Series Analysis. Forecast and management). Moscow: Mir; 1974. 248 p. (in Russ.). [Box D., Dzhenkins G. Time Series Analysis: Forecasting and Control. San Francisco: Hold-en-Day; 1970.]
5. Lʼyuis K.D. Metody prognozirovaniya ekonomicheskikh pokazatelei (Methods of forecasting economic indicators). Moscow: Finansy i statistika; 1986. 130 p. (in Russ.).
6. Borovkov A.A. Matematicheskaya statistika (Mathematical statistics). Moscow: Fizmatlit; 2007. 704 p. (in Russ.) ISBN 978-5-94052-141-X
7. Kendall M., Styuart A. Statisticheskie vyvody i svyazi (Statistical conclusions and relationships). Moscow: Nauka; 1973. 900 p. (in Russ.).
8. Kendall M., Styuart A. Mnogomernyi statisticheskii analiz i vremennye ryady (Multidimensional statistical analysis and time series). Moscow: Nauka; 1976. 736 p. (in Russ.). [Kendall M.G., Stuart A. The advanced theory of statistics (London)]
9. Uilks S. Matematicheskaya statistika (Mathematical statistics). Мoscow: Nauka; 1967. 632 p. (in Russ.).
10. Kobzar' A.I. Prikladnaya matematicheskaya statistika (Applied Mathematical Statistics). Moscow: Fizmatlit; 2006. 816 p. (in Russ.). ISBN 5-9221-0707-0
11. Kagan A.M., Linnik Yu.V., Rao S.R. Kharakterizatsionnye zadachi matematicheskoi statistiki (Characterization problems of mathematical statistics). Moscow: Nauka; 1972. 248 p. (in Russ.).
12. Foster F.G., Stuart A. A distribution-free test in time series dated on the breaking of records. JRSS. 1954;B16(1):1-22. https://doi.org/10.1111/j.2517-6161.1954.tb00143.x
13. Orlov Yu.N., Shagov D.O. Indicative statistics for non-stationary time series. Preprinty IPM im. M. V. Keldysha = Keldysh Institute preprints. 2011;053:20 (in Russ.).
14. Gnedenko B.V. Kurs teorii veroyatnostei (Probability theory course). Moscow: Fizmatlit, 1961. 406 p. (in Russ.)
15. Shugai Yu.S. Neural network algorithms for predicting events and searching for precursors in multidimensional time series. Iskusstvennyi intellect = Artificial. 2004;2,:211-215 (in Russ.).
16. Ermakov S.M. Metod Monte-Karlo i smezhnye voprosy (Monte Carlo method and related issues). Moscow: Nauka; 1975. 471 p. (in Russ.).
17. Ermakov S.M., Mikhailov G.A. Statisticheskoe modelirovanie (Statistical Modeling). Moscow: Nauka; 1982. 296 p. (in Russ.).
18. Kozhevnikov A.S. The software for statistical modeling and analysis of random processes with jumps, which describe the stock price dynamics of aircraft industry. Trudy MAI. 2012;59:230-242 (in Russ.).
19. Khadjeh Nassirtoussi A., Ying Wah T., Ngo Chek Ling D. A novel FOREX prediction methodology based on fundamental data. Afr. J. Bus. Manag. 2011;5(20):8322-8330. https://doi.org/10.5897/AJBM11.798
20. Anastasakis L., Mort N. Exchange rate forecasting using a combined parametric and non-parametric selforganising modelling approach. Expert Sys. Appl. 2009;36(10):12001-12011. https://doi.org/10.1016/j.eswa.2009.03.057
21. Vanstone B., Finnie G. Enhancing stockmarket trading performance with ANNs. Expert Sys. Appl. 2010;37(9):6602-6610. https://doi.org/10.1016/j.eswa.2010.02.124
22. Vanstone B., Finnie G. An empirical methodology for developing stockmarket trading systems using artificial neural networks. Expert Sys. Appl. 2009;36(3):6668-6680. https://doi.org/10.1016/j.eswa.2008.08.019
23. Sermpinis G., Laws J., Karathanasopoulos A., Dunis C. L. Forecasting and trading the EUR/ USD exchange rate with gene expression and psi sigma neural networks. Expert Sys. Appl. August 2012;39(10):8865-8877. https://doi.org/10.1016/j.eswa.2012.02.022
24. Huang S.-C., Chuang P.-J., Wu C.-F., Lai H.-J. Chaos-based support vector regressions for exchange rate forecasting. Expert Sys. Appl. 2010;37(12):8590-8598. https://doi.org/10.1016/j.eswa.2010.06.001
25. Premanode B., Toumazou C. Improving prediction of exchange rates using differential EMD. Expert Sys. Appl. 2013;40(1):377-384. https://doi.org/10.1016/j.eswa.2012.07.048
26. Bahrepour M., Akbarzadeh T. M-R., Yaghoobi M., Naghibi S. M.-B. An adaptive ordered fuzzy time series with application to FOREX. Expert Sys. Appl. 2011;38(1):475-485. https://doi.org/10.1016/j.eswa.2010.06.087
27. Mabu S., Hirasawa K., Obayashi M., Kuremoto T. Enhanced decision making mechanism of rule-based genetic network programming for creating stock trading signals. Expert Sys. Appl. 2013;40(16):6311-6320. https://doi.org/10.1016/j.eswa.2013.05.037
28. Orlov Yu.N., Osminin K.P. Nestatsionarnye vremennye ryady: metody prognozirovaniya s primerami analiza finansovykh i syr'evykh rynkov (Unsteady time series: forecasting methods with examples of analysis of financial and commodity markets). Moscow: LIBROKOM, 2011. 384 p. (in Russ.). ISBN 978-5-397-071272-7
29. Orlov Yu.N., Fedorov S.L. Nonstationary time series trajectories generation on the basis of the Fokker–Planck equation. TRUDY MFTI = Trudy MIPT. 2016;8(2):126–133 (in Russ.).
30. Fuentes M. Non-Linear Diffusion and Power Law Properties of Heterogeneous Systems: Application to Financial Time Series. Entropy. 2018;20(9):649. https://doi.org/10.3390/e20090649
31. Gunawardana A., Meek C., Xu P. A Model for Temporal Dependencies in Event Streams. Microsoft Research. 2011. 8 p. https://www.microsoft.com/en-us/research/publication/a-model-for-temporal-dependencies-in-event-streams/
32. Suraj Singh Chouhan, Ravi Khatri. Data Mining based Technique for Natural Event Prediction and Disaster Management. International Journal of Computer Applications (IJCA). 2016;139(14):34-39. https://doi.org/10.5120/ijca2016909102
33. Radinsky K., Horvitz E. Mining the Web to Predict Future Events. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining. ACM. 2013. P. 255-264. https://doi.org/10.1145/2433396.2433431
34. Chatrath A., Miao H., Ramchander S., & Villupuram S. Currency jumps, cojumps and the role of macro news. J. Int. Money Financ. February 2014;40:42-62. https://doi.org/10.1016/j.jimonfin.2013.08.018
35. Huang C.-J., Liao J.-J., Yang D.-X., Chang T.-Y., & Luo Y.-C. Realization of a news dissemination agent based on weighted association rules and text mining techniques. Expert Sys. Appl. 2010;37(9):6409-6413. https://doi.org/10.1016/j.eswa.2010.02.078
36. Robertson C., Geva S., & Wolff R. What types of events provide the strongest evidence that the stock market is affected by company specific news? In: Proc. Fifth Australasian Data mining conference (AusDM2006). 2006;61:145-153.
37. Preethi P.G., Uma V., Ajit Kumar. Temporal Sentiment Analysis and Causal Rules Extraction from Tweets for Event Prediction. Procedia Computer Science. 2015;48:84-89. https://doi.org/10.1016/j.procs.2015.04.154
38. Gerber M.S. Predicting crime using Twitter and kernel density estimation. Decis. Support Syst. 2014;61(1):115-125. https://doi.org/10.1016/j.dss.2014.02.003
39. Kveid E. Analiz slozhnykh system (Analysis of complex systems). Moscow: Sovetskoe radio; 1969. 512 p. (in Russ.).
40. Baskakova Yu.M., Demin A.A., Lashuk N.E., Terent՚eva N.N. Amerikanskie praktiki elektoral՚nogo prognozirovaniya. Doklad po rezul'tatam issledovaniya VTsIOM (American practices of electoral forecasting. Report on the results of a VTsIOM study). Moscow: OAO «Vserossiiskii tsentr izucheniya obshchestvennogo mneniya»; 2016. 40 p. (in Russ). ISBN 978-5-9905970-5-1
41. Materialy kruglogo stola Obshchestvennoi palaty RF «Matematika na sluzhbe izbiratelei», Press-sluzhba Obshchestvennoi palaty RF (Materials of the round table of the Public Chamber of the Russian Federation “Mathematics in the Service of Voters”, Press Service of the Public Chamber of the Russian Federation). [Electronic resource]: https://www.oprf.ru/press/news/2018/newsitem/44277 (in Russ.).
42. Tolstova Yu.N. Mathematical Modeling of Social Processes and Sociology. Sotsiologicheskie issledovaniya = Sociological Studies. 2018;9:104-112 (in Russ.). https://doi.org/10.31857/S013216250001965-4
43. Tolstova Yu.N. Correlation of Theoretical and Empirical Knowledge when Using Mathematical Methods in Sociological Research. Sotsiologicheskie issledovaniya = Sociological Studies.2018;12:39-48 (in Russ.). https://doi.org/10.31857/S013216250003164-3
44. Walther D. Picking the winner(s): Forecasting elections in multiparty systems. Elect. Stud. December 2015;40:1-13. https://doi.org/10.1016/j.electstud.2015.06.003
45. Kryshtanovskii A.O. The Russian population's attitude toward the president's activities. Russian Politics & Law. 1995;33(6):61-68. https://doi.org/10.2753/RUP1061-1940330661
46. Kryshtanovskii A. Methods of time series analysis. Monitoring obshchestvennogo mneniya: ekonomicheskie i sotsial'nye peremeny = Public Opinion Monitoring: Economic and Social Change. 2000;2(46):44-51 (in Russ.).
47. Kryshtanovskii A.O. “Clusters on factors” is about one common misconception. Sotsiologiya: Metodologiya, metody, matematicheskie modeli (4M) = Sociology: Methodology, Methods, Mathematical Modeling (4M). 2005;21:172187 (in Russ.).
48. Kryshtanovskii A.O. Limitations of the regression analysis method. Sotsiologiya: Metodologiya, metody, matematicheskie modeli (4M) = Sociology: Methodology, Methods, Mathematical Modeling (4M). 2000;12:96-112 (in Russ.).
49. Bonica A.A., Rosenthal H.B., Rothman D.J.C. The political polarization of physicians in the United States: An analysis of campaign contributions to federal elections, 1991 through 2012. JAMA Internal Medicine. 2014;174(8):1308-1317. https://doi.org/10.1001/jamainternmed.2014.2105
50. Panagopoulos C. The dynamics of voter preferences in the 2010 congressional midterm elections. Forum. 2010;8(4):Article number 9. https://doi.org/10.2202/1540-8884.1402
51. Churov V.E., Arlazarov V.L., Solov՚ev A.V. Election Results. Analysis of Electoral Preferences. Trudy Instituta sistemnogo analiza rossiyskoy akademii nauk = Proceeding of the Institute for Systems Analysis of the Russian Academy of Science. 2008;38:6-22 (in Russ.).
52. Foucault M., Nadeau R. Forecasting the 2012 French Presidential Election. PS: Political Science & Politics. April 2012;45(2):218-222. https://doi.org/10.1017/S1049096512000066
53. Healy A., Lenz G.S. Substituting the end for the whole: Why voters respond primarily to the election-year economy. American Journal of Political Science. January 2014;58(1):31-47. https://doi.org/10.1111/ajps.12053
54. Gormley I.C., Murphy T.B. A grade of membership model for rank data. Bayesian Analysis. 2009;4(2):265-296. https://doi.org/10.1214/09-BA410
55. Doktorov B. Glavnaya problema Obamy – ne respublikancy, no ekonomika (Analitiki izbiratel'noj kampanii aktivno izuchayut proshloe dlya predskazaniya budushchego) (The main problem of Obama is not in the Republicans, but in the economy (Campaign analysts are actively studying the past to predict the future). 11 Sept. 2011. [Electronic Resource]: https://fom.ru/special/kto-stanet-prezidentom-ssha/10161
56. Erikson R.S.A., Panagopoulos C.B., Wlezien C.D. Likely (and unlikely) voters and the assessment of campaign dynamics. Public Opin. Quart. 2004;68(4):588-601. https://doi.org/10.1093/poq/nfh041
57. Dassonneville R. Electoral volatility, political sophistication, trust and efficacy: A study on changes in voter preferences during the Belgian regional elections of 2009. Acta Politica. 2012;47(1):18-41. https://doi.org/10.1057/ap.2011.19
58. Dewan T.A., Shepsle K.A.B. Political economy models of elections. Annu. Rev. Polit. Sci. 2011;14(1):311-330. https://doi.org/10.1146/annurev.polisci.12.042507.094704
59. Mundim P.S. The press and the vote in the 2002 and 2006 Brazilian presidential campaigns [Imprensa e voto nas eleições presidenciais Brasileiras de 2002 e 2006]. Revista de Sociologia e Politica. 2012;20(41):123-147. https://doi.org/10.1590/S0104-44782012000100009
60. Hillygus S.D. The evolution of election polling in the United States. Public Opin. Quart. 2011;75(5):962-981. https://doi.org/10.1093/poq/nfr054
61. Cassino D. How Today's Political Polling Works. Harvard Business Review. August, 2016. [Electronic Resource]: https://hbr.org/2016/08/how-todays-political-polling-works
62. Wright Fred A., Wright Alec A. How surprising was Trump՚s victory? Evaluations of the 2016 U.S. presidential election and a new poll aggregation model. Electoral Studies. August 2018;54:81-89. https://doi.org/10.1016/j.electstud.2018.05.001
63. Erikson R.S., Wlezien C. Forecasting the Presidential Vote with Leading Economic Indicators and the Polls. PS: Political Science & Politics. October 2016;49:669-672. https://doi.org/10.1017/S1049096516001293
64. Kennedy C., Blumenthal M., Clement S., Clinton J.D., Durand C., Franklin C., McGeeney K. An Evaluation of the 2016 Election Polls in the United States. Public Opin. Quart. March 2018;82(1):1-33. https://doi.org/10.1093/poq/nfx047
65. Fisher S.D., Ford R., Jennings W., Pickup M., Wlezien C. From polls to votes to seats: Forecasting the 2010 British general election. Electoral Studies. June 2011;30(2):250-257. https://doi.org/10.1016/j.electstud.2010.09.005
66. Linzer D.A. Dynamic Bayesian forecasting of presidential elections in the states. J. Am. Stat. Assoc. 2013;108(501):124-134. https://doi.org/10.1080/01621459.2012.737735
67. Walther D., Hellström J. The verdict in the polls: how government stability is affected by popular support. West European Politics. 2019;42(3):593-617. https://doi.org/10.1080/01402382.2018.1490598
68. Belenky A.S., Kingc D.C. A mathematical model for estimating the potential margin of state undecided voters for a candidate in a US Federal election. Math. Comput. Model. March 2007;45(5-6):585-593. https://doi.org/10.1016/j.mcm.2006.07.007
69. Norpoth H., Gschwend T. The chancellor model: Forecasting German elections. Int. J. Forecasting. JanuaryMarch 2010;26(1):42-53. https://doi.org/10.1016/j.ijforecast.2009.02.008
70. Montalvo J.G., Papaspiliopoulos O., Stumpf-Fétizon T. Bayesian Forecasting of Electoral Outcomes with new Partiesʼ Competition. Barcelona Graduate School of Economics. Working Papers 1065. February 4, 2019. https://ideas.repec.org/p/bge/wpaper/1065.html
The directions of perspective research in the field of analysis and modeling of the dynamics of time series of processes in complex systems with the presence of the human factor are analyzed. The dynamics of processes in such systems is described by non-stationary time series. Predicting the evolution of such systems is of great importance for managing processes in social (election campaigns), economic (stock, futures and commodity markets) and sociotechnical systems (social networks).
It was concluded that to describe processes in complex systems with the presence of the human factor, in addition to traditional factors, it is necessary to develop and use methods and tools to take into account the possibility of self-organization of human groups and the presence of memory about previous states of the system.Review
For citations:
Andrianova E.G., Golovin S.A., Zykov S.V., Lesko S.A., Chukalina E.R. Review of modern models and methods of analysis of time series of dynamics of processes in social, economic and socio-technical systems. Russian Technological Journal. 2020;8(4):7-45. (In Russ.) https://doi.org/10.32362/2500-316X-2020-8-4-7-45