Preview

Russian Technological Journal

Advanced search

A review on control systems hardware and software for robots of various scale and purpose. Part 3. Extreme robotics

https://doi.org/10.32362/2500-316X-2020-8-3-14-32

Abstract

A review of robotic systems is carried out. The paper analyzes applied hardware and software solutions and summarizes the most common block diagrams of control systems. The analysis of approaches to control systems scaling, the use of intelligent control, achieving of fault tolerance, reducing the weight and size of control system elements belonging to various classes of robotic systems is carried out. The goal of the review is finding common approaches used in various areas of robotics to build on their basis a uniform methodology for designing scalable intelligent control systems for robots with a given level of fault tolerance on a unified component base. This part is dedicated to extreme robotics and the generalization of the conclusions for the whole review. The paper notes the possibility and necessity of developing common approaches to the creation of robots of various sizes and purposes. It is noted that, in contrast to many foreign countries, in the Russian Federation developers must consider the serious limitations on the electronics components, which do not allow for the free conversion of technologies between civilian, military and space robotics. In this regard, it is proposed to analyze the interchangeable Russian and foreign microelectronic components, to find technical solutions in the field of the control systems and communication between them, which could be implemented both in foreign and Russian microelectronics, and to create on their basis a conceptual model of scalable intelligent control system with a required level of fault tolerance. The model should be based on a unified set of components.

About the Author

A. M. Romanov
MIREA - Russian Technological University
Russian Federation

Alexey M. Romanov - Cand. Sci. (Engineering), Associate Professor, Chair of Biocybernetics Systems and Technologies, Institute of Cybernetics, MIREA - Russian Technological University.

78, Vernadskogo pr., Moscow 119454.



References

1. Khripunov S.V., Donchenko A.A., Chirov D.S., Vinokurova Yu.S., Klimov R.S. et al. Robototekhnicheskie sredstva, kompleksy i sistemy voennogo naznacheniya. Osnovnye polozheniya. Klassifikatsiya. Metodicheskie Rekomendatsii (Robotic equipment, complexes and military systems. The main provisions. Classification. Guidelines). Moscow: GNII CR MO RF; 2015. 34 p. (in Russ.).

2. Yurevich E.I. Osnovy robototekhniki (Robotics Basics), 4th ed. BHV-Peterburg; 2018. 304 p. (in Russ.). ISBN 978-5-9775-3851-0

3. Zielinska T.T. History of Service Robots and New Trends. In: Novel Design and Applications of Robotics Technologies. IGI Global, 2019:158-187. https://doi.org/10.4018/978-1-5225-5276-5.ch006

4. Kumar V., Bekey G., Zheng Y. Industrial, personal and service robots. G. Bekey (Ed.). Assessment of international research and development in robotics. World Technology Evaluation Center, Lancaster, 2006; P. 41-48. http://www.wtec.org/robotics/report/05-Industrial.pdf

5. Lopota A.V., Yurevich E.I. Stages and development prospects of robotic systems design modular principle. Nauchno tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. Informatika. Telekommunikatsii. Upravlenie = St. Petersburg State Polytechnical University Journal. Computer Science. Telecommunication and Control Systems. 2013;1(164):98-103 (in Russ.).

6. Lopota V.A., Yurevich E.I. Extreme robotics and mechatronics. Principles and perspectives of development. Mekhatronika, avtomatizatsiya, upravlenie = Mekhatronika, Avtomatizatsiya, Upravlenie. 2007;4:37-42 (in Russ.).

7. Lokhin V.M., Romanov M.P., Tripolsky P.E. Increase of efficiency of special robots development on the basis standardization and unification on intelligent control systems hardware and software. Vestnik MGTU MIREA = Herald of MSTU MIREA. 2014;1:99-105 (in Russ.).

8. Furano G., Jansen R., Menicucci A. Review of radiation hard electronics activities at European Space Agency. JINST. 2013;8(02): C02007. http://dx.doi.org/10.1088/1748-0221/8/02/C02007

9. Yin S., Xiao B., Ding S.X., Zhou D. et al. A review on recent development of spacecraft attitude fault tolerant control system. IEEE T. Ind. Electron. 2016;63(5):3311-3320. https://doi.org/10.1109/TIE.2016.2530789

10. Crestani D., Godary-Dejean K., Lapierre L. Enhancing fault tolerance of autonomous mobile robots. Robot. Auton. Syst. 2015;68:140-155. https://doi.org/10.1016/j.robot.2014.12.015

11. Joshi S.D., Talange D.B. Fault Tolerant Control for a Fractional Order AUV System. International Journal of Energy Optimization and Engineering (IJEOE) 2016;5(2):1-24. https://doi.org/10.4018/IJEOE.2016040101

12. Asharina I.V. et al. Problems of creating robust network-centric control systems for spacecraft groupings. Innovacionnye, informacionnye i kommunikacionnye tekhnologii = Innovative, information and communication technologies. 2017;1:325-332 (in Russ.).

13. Tadokoro S. (Ed.). Rescue robotics: DDT project on robots and systems for urban search and rescue. Springer Science & Business Media; 2009. 192 p.

14. Nagatani K., Kiribayashi S., Okada Y., Tadokoro S. et al. Redesign of rescue mobile robot Quince. In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics. 2011. P. 13-18. https://doi.org/10.1109/SSRR.2011.6106794

15. Nagatani K., Nagatani K., Okada Y., Otake K., Yoshida K., Tadokoro S., Nishimura T., Yoshida T. Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots. J. Field Robot. 2013;30(1):44-63. https://doi.org/10.1002/rob.21439

16. Tsarichenko S. Extreme Robotics in the Russian Emergencies Ministry - Challenges and Prospects. Bezpieczenstwo i Technika Pozarnicza = Safety & Fire Technique. 2012;28:97-105 (in Russ.).

17. Tsarichenko S.G., Savin M.V., Mozgovoi A.P., Nikolaeva E.Yu. Experience of 8 years of activity in the creation of robotics. Pozharnaya bezopasnost: problemy i perspektivy = Fire safety: problems and prospects. 2013;1(4):97-105 (in Russ.).

18. Kruijff G-J.M., Pirri F., Gianni M., Papadakis P. et al. Rescue robots at earthquake-hit Mirandola, Italy: A field report. In: 2012 IEEE international symposium on safety, security, and rescue robotics (SSRR). IEEE. 2012;1-8. https://doi.org/10.1109/SSRR.2012.6523866

19. Manko S.V., Diane S.A.K., Lokhin V.M., Novoselsky A.K. Group control of robots for debris removal and construction disassembly in the atomic industry. Ekstremalnaya robototekhnika = Extreme Robotics. 2017;1(1):302-311 (in Russ.).

20. Vazaev A.V., Noskov V.P., Rubtsov I.V., Tsarichenko S.G. Combined computer vision system in firefighting robot control system. Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki = Izvestiya SFedU. Engineering sciences. 2017;1(186):121-132 (in Russ.). https://doi.org/10.18522/2311-3103-2017-1-121132

21. Yoshida K., Wilcox B., Hirzinger G., Lampariello R. Space robotics. In: Springer Handbook of Robotics. B. Siciliano, O. Khatib (Eds.). Springer, Cham, 2016. P. 1423-1462. https://hdl.handle.net/10.1007/978-3-319-32552-1_55

22. Yim M., Roufas K., Duff D., Zhang Y. Modular reconfigurable robots in space applications. Auton. Robot. 2003;14(2-3):225-237. https://doi.org/10.1023/A:1022287820808

23. Polesskii S.N., Zhadnov V.V., Artyukhova M.A., Prokhorov V.F. Ensuring the radiation resistance of spacecraft equipment in the design. Komponenty i tekhnologii = Components & technologies. 2010;9:93-98 (in Russ.).

24. Ivchenko V., Krug P., Matyukhina T., Pavelyev S. Mars-500 Program Space-Based Mobile Robot “Turist”. Appl. Mech. Mater. 2015;789-790:742-746. https://doi.org/10.4028/www.scientific.net/AMM.789-790.742

25. Katz D.S., Some R.R. NASA advances robotic space exploration. Computer. 2003;36(1):52-61. https://doi.org/10.1109/MC.2003.1160056

26. Ratter D. FPGAs on mars. Xcell J. 2004;50:8-11.

27. Hirzinger G., Brunner B., Landzettel K. et al. Space robotics - DLR's telerobotic concepts, lightweight arms and articulated hands. Auton. Robots. 2003;14(2-3):127-145. https://doi.org/10.1023/A:1022275518082

28. Morris K. FPGAs in space. FPGA and Programmable Logic J. 2004;4(5).

29. Jorg S., Nickl V., Nothhelfer A., Bahls T. et al. The computing and communication architecture of the DLR hand arm system. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2011. P. 1055-1062. https://doi.org/10.1109/IROS.2011.6094860

30. Lentaris G., Stamoulias I., Diamantopoulos D., Maragos K. et al. SPARTAN/SEXTANT/COMPASS: advancing space rover vision via reconfigurable platforms. In: Proc. Applied Reconfigurable Computing - 11th International Symposium. Springer, Cham, 2015. P. 475-486. https://doi.org/10.1007/978-3-319-16214-0_44

31. Montealegre N., Merodio L., Fernandez A., Armbruster P. et al. In-flight reconfigurable FPGA-based space systems. In: 2015 NASA/ESA Conference on Adaptive Hardware and Systems (AHS). IEEE. 2015. P. 1-8. https://doi.org/10.1109/AHS.2015.7231177

32. Lentaris G., Stamoulias J., Soudris D., Lourakis M. et al. HW/SW codesign and FPGA acceleration of visual odometry algorithms for rover navigation on Mars. IEEE T. Circ. Syst. Vid. 2016;26(8):1563-1577. https://doi.org/10.1109/TCSVT.2015.2452781

33. Jorg S., Tully J., Albu-Schaffer A. The hardware abstraction layer - supporting control design by tackling the complexity of humanoid robot hardware. In: Proc. IEEE International Conference on Robotics and Automation (ICRA). 2014. P. 6427-6433. https://doi.org/10.1109/ICRA.2014.6907808

34. Gankidi P.R., Thangavelautham J. FPGA architecture for deep learning and its application to planetary robotics. In: Proc. 2017 IEEE Aerospace Conference. 2017. P. 1-9. https://doi.org/10.1109/AERO.2017.7943929

35. Wirthlin M.J., Keller A.M., Draper J.T. et al. SEU mitigation and validation of the LEON3 soft processor using triple modular redundancy for space processing. In: Proc. 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 2016. P. 205-214. https://doi.org/10.1145/2847263.2847278

36. Notebaert O., Montano G., Planche T. et al. Towards SpaceWire-2: Space robotics needs: SpaceWire missions and applications, long paper. In: Proc. 2016 International SpaceWire Conference (SpaceWire). IEEE, 2016. P. 1-9. https://doi.org/10.1109/SpaceWire.2016.7771614

37. Badger J., Gooding D., Ensley K., Hambuchen K., Thackston A. ROS in space: A case study on robonaut 2. In: Robot Operating System (ROS), A. Koubaa (Ed.). Springer, Cham, 2016. P. 343-373. https://doi.org/10.1007/978-3-319-26054-9_13

38. Rozman B.Ya., Rimskii-Korsakov N.A. Remote control underwater vehicles IO RAS. In: Proc. IX International Scientific and Technical Conference. "Modern methods and means of oceanological research." Moscow: RAS Institute of Oceanology Publishing house; 2005. P. 46-56 (in Russ.). URL: http://hdl.handle.net/123456789/2829

39. Lokhin V.M., Manko S.V., Romanov M.P., Romanov A.M. The universal on-board control system for robots of various type of development and purpose (implementation of the principles of unification and import substitution). Vestnik MGTU MIREA = Herald of MSTU MIREA. 2015;1(3):230-248 (in Russ.).

40. Vaulin Yu.V., Inzartsev A.V, Lvov O.Yu., Matvienko Yu.V, Pavin А.М. The configurable navigation and control system for multifunction underwater robots. Podvodnye issledovaniya i robototekhnika = Underwater research and robotics. 2017;1(23):4-13 (in Russ.).

41. Kozhemyakin I.V., Rozhdestvensky K.V., Ryzhov V.A., Smolnikov A.V., Tatarenko E.I. Underwater Gliders: yesterday, today, tomorrow. Part 2. Morskoi vestnik. 2013;2(46):98-101 (in Russ.).

42. DeMarco K., West M.E., Collins T.R. An implementation of ROS on the Yellowfin autonomous underwater vehicle (AUV). In: Proc. OCEANS'11 MTS/IEEE KONA. 2011. 7 p. https://doi.org/10.23919/OCEANS.2011.6107001

43. Smith R.N., Py F., Rajan K., Sukhatme G.S. Adaptive path planning for tracking ocean fronts with an autonomous underwater vehicle. In: Experimental Robotics, M.A. Hsieh, O. Khatib, V. Kumar (Eds.). Springer; 2016. P. 761-775. https://doi.org/10.1007/978-3-319-23778-7

44. Lawrance N.R.J., Somers T., Jones D., Mccammon S. et al. Ocean deployment and testing of a semi-autonomous underwater vehicle. In: Proc. OCEANS 2016 MTS/IEEE Monterey. IEEE; 2016. 6 p. https://doi.org/10.1109/OCEANS.2016.7761276

45. Sukvichai K., Wongsuwan K., Kaewnark N., Wisanuve P. Implementation of visual odometry estimation for underwater robot on ROS by using RaspberryPi 2. In: Proc. 2016 International Conference on Electronics, Information, and Communications (ICEIC). IEEE; 2016. 4 p. https://doi.org/10.1109/ELINFOCOM.2016.7563010

46. Chalkiadakis V., Papandroulakis N., Livanos G., Moirogiorgou K. et al. Designing a small-sized autonomous underwater vehicle architecture for regular periodic fish-cage net inspection. In: Proc. 2017 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE; 2017. 6 p. https://doi.org/10.1109/IST.2017.8261525

47. Centelles D., Soriano A., Marin R., Sanz PJ. Arquitectura para teleoperacion inalambrica con realimentacion visual de ROVs basados en ArduSub. Actas de las XXXIX Jornadas de Automatica, Badajoz, 5-7 de Septiembre de 2018. https://doi.org/10.17979/spudc.9788497497565.0408

48. ArduSub GitBook [Electronic resource], URL:https://www.ardusub.com/

49. Antonelli G. Dynamic Control of 6-DOF AUVs and Fault Detection/Tolerance Strategies. In: Underwater Robots. Springer Tracts in Advanced Robotics, V. 123. Springer, Cham, 2018. P. 111-173. https://doi.org/10.1007/978-3-319-77899-0_3

50. Springer P.J. Military robots and drones: a reference handbook. Santa Barbara, CA: ABC-CLIO, 2013. 297 p. ISBN 9781-59884-732-1.

51. Rubtsov I.V. Current situation and perspective of development for ground military and special robotics. Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki = Izvestiya SFedU. Engineering sciences. 2013;3(140):14-21 (in Russ.).

52. Kudryashov V.B., Lapshov V.S., Noskov V.P., Rubcov I.V. Problems of robotization for military ground technics. Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki = Izvestiya SFedU. Engineering sciences. 2014;3(152):42-57 (in Russ.).

53. Yamauchi B.M. PackBot: a versatile platform for military robotics. In: Proc. SPIE - International Society for Optics and Photonics, 2004. V. 5422. Unmanned ground vehicle technology VI. P. 228-238. https://doi.org/10.1117/12.538328

54. Makarov I.M., Lokhin V.M., Manjko S.V., Romanov M.P., Ivlev A.A., Yurin A.D. Perspectives and Realities of Used Intellectual Technologies of Control and Information Processing for Creation of Eguipment Models and War Technics of Modern Generation. Mekhatronika, avtomatizaciya, upravlenie = Mechatronics, automation, control.2009;3:16-23 (in Russ.).

55. Makarov I.M., Lokhin V.M., M£nko S.V., Rоmаnov M.P., Aleksandrova R.I. Development of intelligent control technology for creation of autonomous objects on the basis of complex automation design. Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki = Izvestiya SFedU. Engineering sciences. 2013;3(140):7-14 (in Russ.).

56. Romanov A.M., Slaschov B.V. FPGA-based implementation of Kalman filtering. In: Proc. Vth Scientific and Technical Conference of Young Scientists and Specialists “Actual issues of the development of systems and means of military space defense”. Moscow, September 25-27, 2014. P. 402-407 (in Russ.).

57. Rodionov V.V., Filippov S.I., Varabin D.A. Unified robotics control system. Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki = Izvestiya SFedU. Engineering sciences. 2018;1(195):128-140 (in Russ.).

58. Towler J., Bries M. ROS Military: Progress and Promise. In: Proc. 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), 2018. 10 p. URL: https://events.esd.org/wp-content/uploads/2018/08/ROS-Military-Progress-and-Promise.pdf

59. Ernst N. A., Kazman R., Bianco P. Towards rapid composition with confidence in robotics software. In: Proc. 1st International Workshop on Robotics Software Engineering. ACM, 2018. P. 44-47. https://doi.org/10.1145/3196558.3196567

60. Makarov I.M., Lohin V.M., Manko S.V., Romanov M.P., Kryuchenkov E.N., Kucherskiy R.V., Diane S.A. Multiagent robotic systems: Application Examples and Prospects. Mekhatronika, avtomatizaciya, upravlenie = Mechatronics, automation, control. 2012;2: 22-32 (in Russ.).

61. Korchak V.Yu., Lapshov V.S., Rubtsov I.V. Perspective of development for military and special ground robots. Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki = Izvestiya SFedU. Engineering sciences. 2015.;10(171):83-95 (in Russ.).

62. Pavin A.M., Inzartsev A.V., Eliseenko G.D. A reconfigurable distributed system for Autonomous Unmanned Underwater Vehicle group management. Tekhnicheskie problemy osvoeniya Mirovogo okeana = Technical problems of the development of the oceans. 2017;7:263-269 (in Russ.).

63. Mayoral V., Hernandez A., Kojcev R., Muguruza I., Zam I. The shift in the robotics paradigm—The Hardware Robot Operating System (H-ROS); an infrastructure to create interoperable robot components. In: 2017 NASA/ ESA Conference on Adaptive Hardware and Systems (AHS). IEEE, 2017. P. 229-236. https://doi.org/10.1109/AHS.2017.8046383

64. Putin V.V. Message of the President to the Federal Assembly, 2019 [Electronic resource]: URL: http://kremlin.ru/events/president/transcripts/copy/59863 (in Russ.).


Supplementary files

1. The goal of the review is finding common approaches used in various fields of robotics to build on their basis a uniform methodology for designing scalable intelligent control systems for robots with a given level of fault tolerance on a unified component base. This part is dedicated to extreme robotics and the generalization of the conclusions for the entire review articles. In this regard, it is proposed to analyze the interchangeable Russian and international microelectronic components, find technical solutions in the field of the control systems and communication between them, which could be implemented both in international and Russian microelectronics and on the basis of them create conceptual model of scalable intelligent control system with a required level of fault tolerance to a unified set of components.
Subject
Type Исследовательские инструменты
View (260KB)    
Indexing metadata ▾

The goal of the review is finding common approaches used in various fields of robotics to build on their basis a uniform methodology for designing scalable intelligent control systems for robots with a given level of fault tolerance on a unified component base. This part is dedicated to extreme robotics and the generalization of the conclusions for the entire review articles.

In this regard, it is proposed to analyze the interchangeable Russian and international microelectronic components, find technical solutions in the field of the control systems and communication between them, which could be implemented both in international and Russian microelectronics and on the basis of them create conceptual model of scalable intelligent control system with a required level of fault tolerance to a unified set of components.

Review

For citations:


Romanov A.M. A review on control systems hardware and software for robots of various scale and purpose. Part 3. Extreme robotics. Russian Technological Journal. 2020;8(3):14-32. (In Russ.) https://doi.org/10.32362/2500-316X-2020-8-3-14-32

Views: 1315


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)