Genetic clustering algorithm
https://doi.org/10.32362/2500-316X-2019-7-6-134-150
Abstract
About the Author
M. A. AnfyorovRussian Federation
Mikhail A. Аnfyorov, Dr. of Sci. (Engineering), Professor of the Chair “Applied and Business Informatics,”
78, Vernadskogo pr., Moscow 119454, Russia
References
1. Fuzzy systems, soft calculations and intellectual technologies: Proceedings of the VII All-Russian Scientific and Practical Conference. St. Petersburg, July 03-07, 2017. V. 2. St. Petersburg: Politekhnika-servis Publ., 2017. 210 p. (in Russ.).
2. Yudin V.N., Karpov L.E. Incompletely described objects in decision support. Programming and Computer Software. 2017;43(5):294-299.
3. Аnfyorov M.А. System optimization of high technologies. Izv. VUZ. Аviatsionnaya tekhnika = Russian Aeronautics. 2002;2:57-60 (in Russ.).
4. Batyrshin I.Z., Nedosekin А.А., Stetsko А.А., Tarasov V.B., Yazenin A.V., Yarushkina N.G. Fuzzy hybrid systems: theory and practice. Ed. N.G. Yarushkina. Moscow: Fizmatlit Publ., 2007. 207 p. (in Russ.).
5. Аdzhemov S.S., Klenov N.V., Tereshonok M.V., Chirov D.S. The use of artificial neural networks for classification of signal sources in cognitive radio systems. Programming and Computer Software. 2016;42(3):121-128. 10.1134/S0361768816030026
6. Hu Z., Bodyanskiy Y., Tyshchenko O.K. Self-learning procedures for a kernel fuzzy clustering system. Advances in Computing Science for Engineering and Education. 2019;754:487-497. http://dx.doi.org/10.1007/978-3-319-91008-6_49
7. Аnfyorov M.А., Khannanov M.G. Cluster approach to design in CAM. In: Provedeniye nauchnykh issledovaniy v oblasti obrabotki, khraneniya, peredachi i zashchity informatsii = Conducting scientific research in the field of processing, storage, transmission and protection of information. Collection of scientific papers in 4 v. V. 3. Ul’yanovsk: UlGTU Publ., 2009; pp. 60-65 (in Russ.).
8. Borozdina N.А. The use of hierarchical cluster analysis for segmentation of consumers of the market of cellular communication. Molodoi uchenyi = Young scientist. 2016;29:365-367. (in Russ.). URL: https://moluch.ru/archive/133/37358/ (accessed November 13, 2019).
9. Dudarin P.V., Yarushkina N.G. Approaches to fuzzy and hierarchical clustering and classification of key process indicators of the strategic planning system of the Russian Federation. In: Proceedings of the VII All-Russian Scientific and Practical Conference “Fuzzy Systems, Soft Computing and Intelligent Technology”. St. Petersburg, July 03–07, 2017. V. 2. SPb.: Polytekhnik servis Publ., 2017; pp. 65-73 (in Russ.).
10. Petukhova M.V. Clustering of borrowers at the level of defaults: Rating approach (regions of Siberian Federal District). Zhurnal Novoi ekonomicheskoi assotsiatsii = J. New Economic Association. 2012;4(16):71-102 (in Russ.).
11. Аnfyorov M.А. Kohonen networks in a problem of identification of economically unstable regional structures. Proceedings of the XV All-Russian Scientific and Practical Conference “Nejroinformatika 13” [Neuroinformatics-2013]. Moscow, 21–25 January, 2013. V. 3. М.: NIYaU MIFI, 2013; pp. 177-184 (in Russ.).
12. Аnfyorov M.А., Rashitova O.B. SADT modeling of the Russian Federation tax system. Ekonomika i upravlenie: nauchno-prakticheskii zhurnal = Economics and Management: Research and Practice Journal. 2015;2(124):94-101 (in Russ.).
13. González del Pozo R., García-Lapresta J.L., Pérez-Román D. Clustering U.S. 2016 presidential candidates through linguistic appraisals. Advances in Intelligent Systems and Computing. 2018;642:143-153. https://doi.org/10.1007/978-3-319-66824-6_13
14. Kvostikov А.V., Krylov А.S., Kamalov U.R. Ultrasound image texture analysis for liver fibrosis stage diagnostics. Programming and Computer Software. 2015;41(5):273-278. https://doi.org/10.1134/S0361768815050059
15. Kumar S., Mishra S., Asthana P. Automated detection of acute leukemia using k-mean clustering algorithm. Advances in Intelligent Systems and Computing. 2018;554:655-670. https://doi.org/10.1007/978-981-10-3773-3_64
16. Abadi S., Sari T.I., Maseleno A., Muslihudin M., Mat The K.S., Nasir B.M., Huda M., Ivanova N.L., Satria F. Application model of k-means clustering: insights into promotion strategy of vocational high school. International Journal of Engineering and Technology. 2018;7(2.27):182-187. http://dx.doi.org/10.14419/ijet.v7i2.11491
17. Hussain S., Atallah R., Kamsin A., Hazarika J. Classification, Clustering and Association Rule Mining in Educational Datasets Using Data Mining Tools: A Case Study. Advances in Intelligent Systems and Computing. 2019;765:196-211. https://doi.org/10.1007/978-3-319-91192-2_21
18. Kharinov M.V. Pixel clustering for color image segmentation. Programming and Computer Software. 2015:41(5):258-266. https://doi.org/10.1134/S0361768815050047
19. Аstrakhantsev N.А., Fedorenko D.G. Turdakov D.YU. Methods for automatic term recognition in domainspecific text collections: A survey. Programming and Computer Software. 2015;41(6):336-349. https://doi.org/10.1134/S036176881506002X
20. Lakhno V., Zaitsev S., Tkach Y., Petrenko T. Adaptive expert systems development for cyber attacks recognition in information educational systems on the basis of signs’ clustering. Advances in Intelligent Systems and Computing. 2019;754:673-682. https://doi.org/10.1007/978-3-319-91008-6_66
21. Hartigan, J.A., Wong, M. A. Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society, Series C (Applied Statistics). 1979;28(1):100-108.
22. Kohonen T. Self-Organizing Maps: 3rd edition. Berlin - New York: Springer-Verlag, 2001. 521 p.
23. Zhang T., Ramakrishnan R., Livny M. BIRCH: an efficient data clustering method for very large databases. In: Proceedings of the ACM SIGMOD international conference on Management of data (SIGMOD ’96). 1996; pp. 103-114. https://doi.org/10.1145/235968.233324
24. Päivinen N. Clustering with a minimum spanning tree of scale-free-like structure. Pattern Recognition Letters. 2005;26(7):921-930. https://doi.org/10.1016/j.patrec.2004.09.039
25. Sudipto Guha, Rajeev Rastogi, Kyuseok Shim. CURE: An Efficient Clustering Algorithm for Large Databases. Information Systems. 1998;26(1):35-58. https://doi.org/10.1016/S0306-4379(01)00008-4
26. Sudipto Guha, Rajeev Rastogi, Kyuseok Shim. ROCK: a robust clustering algorithm for categorical attributes. Information Systems. 2000;25(5):345-366. https://doi.org/10.1016/S0306-4379(00)00022-3
27. Bodyanskiy Y., Didyk O. On-line robust fuzzy clustering for anomalies detection. Advances in Intelligent Systems and Computing. 2019;754:402-409. https://doi.org/10.1007/978-3-319-91008-6_40
28. Ivanova E.V., Sokolinsky L.B. Parallel processing of very large databases with using distributed columnar indexes. Programming and Computer Software. 2017;43(3):131-144. https://doi.org/10.1134/S0361768817030069
29. Shao J., Yang Q., Schmidt B., Dang H-V., Kramer S. Scalable Clustering by Iterative Partitioning and Point Attractor Representation. ACM Transactions on Knowledge Discovery from Data. 2016;11(1):5:1-5:23. https://doi.org/10.1145/2934688
30. Songlei J.https://orcid.org/0000-0001-5760-6431, Guansong P., Longbing C., Kai L., Hang G. CURE: Flexible Categorical Data Representation by Hierarchical Coupling Learning. IEEE Transactions on Knowledge and Data Engineering. 2019;31(5):853-866. https://doi.org/10.1109/TKDE.2018.2848902
31. Sheikholeslami G., Chatterjee S., Zhang A. WaveCluster: A Wavelet-Based Clustering Approach for Spatial Data. VLDB Journal. 2000;8(2-4):289-304. http://dx.doi.org/10.1007/s007780050009
32. Gionis A., Mannila H., Tsaparas P. Clustering Aggregation. ACM Transactions on Knowledge Discovery from Data. 2007;1(1):Article 4. 30 p. https://doi.org/10.1145/1217299.1217303
33. Wang C., She Z., Stantic B., Chi C.H., Cao L. Coupled Clustering Ensemble by Exploring Data Interdependence. ACM Transactions on Knowledge Discovery from Data. 2018;12(6):63:1-63:38. https://doi.org/10.1145/3230967
34. Zhang X., Zhang X., Liu H. Smart Multitask Bregman Clustering and Multitask Kernel Clustering. ACM Transactions on Knowledge Discovery from Data. 2015;10(1):8:1-8:29. https://doi.org/10.1145/2747879
35. Abasi A., Sajedi H. Fuzzy-clustering based data gathering in wireless sensor network. International Journal on Soft Computing (IJSC). 2016:7(1):1-15. https://doi.org/10.5121/ijsc.2016.7101
36. Gorbatkov S.А., Rashitova O.B. Modeling of tax administrative decisions on the basis of Kohonen’s neural networks. Informatsionnye tekhnologii = Information Technology. 2013;5:60-65 (in Russ.).
Supplementary files
|
1. Fig. 4. Operation of the algorithm on transient modes (strong clustering) | |
Subject | ||
Type | Исследовательские инструменты | |
View
(2MB)
|
Indexing metadata ▾ |
Review
For citations:
Anfyorov M.A. Genetic clustering algorithm. Russian Technological Journal. 2019;7(6):134-150. (In Russ.) https://doi.org/10.32362/2500-316X-2019-7-6-134-150