Preview

Russian Technological Journal

Advanced search

A review on control systems hardware and software for robots of various scale and purpose. Part 2. Service robotics

https://doi.org/10.32362/2500-316X-2019-7-6-68-86

Abstract

A review of robotic systems was carried out. The paper analyzes applied hardware and software solutions and summarizes the most common block diagrams of control systems. The analysis of approaches to control systems scaling, the use of intelligent control, the achievement of fault tolerance, and the reduction of the weight and size of control system elements belonging to various classes of robotic systems were carried out. The goal of the review is finding common approaches used in various areas of robotics to build on their basis a uniform methodology for designing scalable intelligent control systems for robots with a given level of fault tolerance on a unified component base. This part is dedicated to service robotics. The following conclusions are made on the basis of the review results: the key technology in service robotics from the point of view of scalability is the Robot Operating System (ROS); service robotics is today the main springboard for testing intelligent algorithms for the tactical and strategic control levels that are integrated into a common system based on ROS; the problem of ensuring fault tolerance in the service robotics is practically neglected, with the exception of the issue of increasing reliability by changing behavioral algorithms; in a number of areas of service robotics, in which the reduction of mass and dimensions is especially important, the robot control systems are implemented on a single computing device, in other cases a multi-level architecture implemented on Linux-based embedded computers with ROS are used.

About the Author

Aleksey M. Romanov
MIREA – Russian Technological University
Russian Federation

Alexey M. Romanov, Cand. of Sci. (Engineering), Associate Professor, Chair of Biocybernetics Systems and Technologies

78, Vernadskogo pr., Moscow 119454, Russia



References

1. Donchenko A.A., Hripunov S.V., Chirov D.S. [et al.] Robotic equipment, complexes and military systems. The main provisions. Classification. Guidelines. Moscow: “GNIICR” RF MO (Main Research and Testing Center for Robotics of the Ministry of Defense of the Russian Federation), 2014. 34 p. (in Russ.).

2. Yurevich E.I. Basics of Robotics, 4th ed. SPb: BHV-Peterburg Publ., 2018. 304 p. (in Russ.).

3. Zielinska T.T. History of service robots and new trends. In: Novel Design and Applications of Robotics Technologies. IGI Global, 2019:158-187. https://doi.org/10.4018/978-1-5225-5276-5.ch006

4. Kumar V., Bekey G., Zheng Y. Industrial, personal and service robots. In: Assessment of International Research and Development in Robotics. Ed. G. Bekey. World Technology Evaluation Center, Lancaster, 2006; pp. 41-48. http:// www.wtec.org/robotics/report/05-Industrial.pdf

5. Lopota V.A., Yurevich E.I. Extreme robotics and mechatronics. Principles and perspectives of development. Mekhatronika, avtomatizatsiya, upravlenie = Mekhatronika, Avtomatizatsiya, Upravlenie. 2007;4:37-42 (in Russ.).

6. GOST R ISO 8373-2012. Robots and robotic devices. Vocabulary. Moscow: Stahdartinform Publ., 2015. 16 p. (in Russ.)

7. Quigley M., Conley K., Gerkey B.P., Faust J., Foote T., Leibs J., Wheeler, R., Ng A.Y. ROS: an open-source Robot Operating System. In: ICRA workshop on open source software. 2009;3(5): 6 p.

8. Garber L. Robot OS: A new day for robot design. Computer. 2013;46(12):16-20. http://dx.doi.org/10.1109/ MC.2013.434

9. Koubâa A. (ed.). Robot Operating System (ROS). Verlag: Springer International Publishing, 2017. eBook ISBN 978-3-319-54927-9. https://doi.org/10.1007/978-3-319-54927-9

10. Zhang L., Merrifield R., Deguet A., Yang G-Z. Powering the world’s robots-10 years of ROS. Sci. Robotics. 2017;2(11):eaar1868. http://dx.doi.org/10.1126/scirobotics.aar1868

11. Bouchier P. Embedded ROS [ROS topics]. IEEE Robotics & Automation Magazine. 2013;20(2):17-19. http://dx.doi.org/10.1109/MRA.2013.2255491

12. Romanov A., Romanov M., Slepynina E., Kholopov V. Analysis of ROS performance in terms of intelligent monitoring of discrete machinery manufacturing control systems. In: Proc. 15th Student Conference on Research and Development (SCOReD). IEEE, 2017; pp. 13-17. http://dx.doi.org/10.1109/SCORED.2017.8305429

13. Bohren J., Rusu R.B., Marder-Eppstein E., Pantofaru C. Towards autonomous robotic butlers: Lessons learned with the PR2. In: Proc. 2011 IEEE International Conference on Robotics and Automation. IEEE, 2011; pp. 5568-5575. https://doi.org/10.1109/ICRA.2011.5980058

14. Willow Garage, PR2 Hardware Specs – [Electronic resource], URL:http://www.willowgarage.com/pages/pr2/specs

15. Willow Garage, PR2 User Manual, 2012 – [Electronic resource], URL:https://www.clearpathrobotics.com/wpcontent/uploads/2014/08/pr2_manual_r321.pdf

16. Jakubiak J., Drwięga M., Stańczyk B. Control and perception system for ReMeDi robot mobile platform. In: Methods and Models in Automation and Robotics (MMAR). 2015 20th International Conference. IEEE, 2015; pp. 750- 755. https://doi.org/10.1109/MMAR.2015.7283969

17. Arent K., Jakubiak J., Drwięga M., Cholewiński M. Control of mobile robot for remote medical examination: Design concepts and users' feedback from experimental studies. In: Proc. of the 9th International Conference on Human System Interactions (HIS 2016). IEEE, 2016; pp. 76-82. http://dx.doi.org/10.1109/HSI.2016.7529612

18. Bačík J., Durovsky F., Biros M., Kyslan K. Pathfinder–development of automated guided vehicle for hospital logistics. IEEE Access. 2017;5(1):26892-26900. https://doi.org/10.1109/ACCESS.2017.2767899

19. Rojo J., Rojas R., Gunnarsson K., Simon M., Wiesel F., Ruf F., Wolter L., Zilly F., Santrac N., Ganjineh T., Sarkohi A., Ulbrich F., Latotzky D., Jankovic B., Hohl G., Wisspeintner T., May S., Pervoelz K., Nowak W., Maurelli F., Droeschel D. Spirit of Berlin: An Autonomous car forthe DARPA urban challenge—Hardware and software architecture. Free Univ. Berlin. Berlin, Germany, Tech. Rep., June 2007.

20. Gomez D., Marin P., Hussein A., de la Escalera A. ROS-based architecture for autonomous intelligent campus automobile (iCab). In: UNED Plasencia Revista de Investigacion Universitaria. Publisher: Agbatanero, 2016;12:257-272.

21. Shimchik I., Sagitov A., Afanasyev I., Matsuno F., Magid E. Golf cart prototype development and navigation simulation using ROS and Gazebo. MATEC Web of Conferences. 2016. V. 75. Article Number 09005. https://doi.org/10.1051/matecconf/20167509005

22. Jo K., Kim J., Kim D., Jang C. Development of autonomous car - Part II: A case study on the implementation of an autonomous driving system based on distributed architecture. IEEE Trans. on Industrial Electronics. 2015;62(8):5119- 5132. http://dx.doi.org/10.1109/TIE.2015.2410258

23. Ferreira T., Garcia O., Vaqueiro J. Software Architecture for an Autonomous Car Simulation Using ROS, MORSE & A Qt Based Software for Control and Monitoring. In: XII Simpósio Brasileiro de automação Inteligente, 2015. 7 p.

24. Fernandes L.C., Souza J., Perrin G., Shinzato P.Y. CaRINA intelligent robotic car: architectural design and applications. J. Systems Architecture. 2014;60(4):372-392. http://dx.doi.org/10.1016/j.sysarc.2013.12.003

25. Lokhin V.M. [et al.] Autonomous mobile mini-robot. Izvestiya SFedU. Engineering sciences. 2006;58(3):17-23. (in Russ.)

26. Doroftei I., Grosu V., Spinu V. Omnidirectional mobile robot-design and implementation. In book: Bioinspiration and Robotics: Walking and Climbing Robots. Ed. M.K. Habib. Vienna, Austria: I-Tech, 2007;511-528. https://doi.org/10.5772/5518

27. Bischoff R., Huggenberger U., Prassler E. KUKA youBot-a mobile manipulator for research and education. In: Proc. IEEE International Conference on Robotics and Automation. Shanghai, China, 2011:1-4. http://dx.doi.org/10.1109/ ICRA.2011.5980575

28. Araújo A., Portugal D., Couceiro M.S., Rocha R.P. Integrating Arduino-based educational mobile robots in ROS. Journal of Intelligent & Robotic Systems. 2015;77(2):281-298. https://doi.org/10.1007/s10846-013-0007-4

29. López-Rodríguez F.M., Cuesta F. Andruino-A1: Low-cost educational mobile robot based on Android and Arduino. Journal of Intelligent & Robotic Systems. 2016;81(1):63-76. http://dx.doi.org/10.1007/s10846-015-0227-x

30. Jaskot K., Łakota T. Experimental mobile robot—Hardware. Innovative Simulation Systems. Springer, Cham, 2016;277-289.

31. Morozov A.A., Rusakov D.A., Kazachek N.A. Hardware-software complex based on mobile robots with variable chassis geometry. Materials of the VI Int. Scientific and Technical Conf. of Young Scientists, 2016. Omsk: Publishing house of the Omsk State Technical University, 2016;146-150 (in Russ.).

32. Mondada F., Bonani M., Riedo E., Briod M. Bringing robotics to formal education: The thymio open-source hardware robot. IEEE Robotics & Automation Magazine. 2017;24(1): 77-85. https://doi.org/10.1109/MRA.2016.2636372

33. Alberri M., Hegazy S., Badra M., Nasr M. Generic ROS-based Architecture for Heterogeneous Multi-Autonomous Systems Development. In: 2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES). IEEE, 2018. 6 p. https://doi.org/10.1109/ICVES.2018.8519589

34. Bruyninckx H. Open robot control software: the OROCOS project. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation. IEEE, 2001;3:2523-2528. https://doi.org/10.1109/ROBOT.2001.933002

35. Schlegel C. A component approach for robotics software: Communication patterns in the OROCOS context. In: Autonome Mobile Systeme 2003. Dillmann R., Wörn H., Gockel T. (eds). Berlin, Heidelberg: Springer, 2003; pp. 253-263. https://doi.org/10.1007/978-3-642-18986-9_26

36. Mikhailova V.V., Mikhailov E.A., Sarvarov A.S. Software solutions for the development of robot control system architecture. Elektrotekhnicheskie sistemy i kompleksy = Electrotechnical systems and complexes. 2013;(21):111-117 (in Russ.).

37. Smits R., Bruyninckx H. Composition of complex robot applications via data flow integration. In: Proceedings 2011 IEEE International Conference on Robotics and Automation. IEEE, 2011; pp. 5576-5580. http://dx.doi.org/10.1109/ICRA.2011.5979958

38. Buys K., Bellens S., Vanthienen N., Decre W., Klotzbucher M., De Laet T., Smits R., Bruyninckx H., De Schutter J. Haptic coupling with the PR2 as a demo of the OROCOS-ROS-Blender integration. In: IROS PR2 Workshop. San Francisco, California. 2011;25:30.

39. Petin V. Microcomputers Raspberry Pi: A Practical Guide. SPb.: BHV-Peterburg Publ., 2015. 240 p. ISBN 978-5-9775-3519-9 (in Russ.).

40. Manko S.V., Diane S.A., Novoselsky A.K. A prototype of multi-agent robotic system based on KUKA youBot platform. Proceedings of the International Scientific and Technical Conference “Extreme Robotics’ (St. Petersburg, 2015). SPb.: Polytechnic service, 2015; pp. 210-214. (in Russ.).

41. Schillaci G., Schillaci F., Hafner V.V. A Customisable underwater robot. arXiv preprint arXiv:1707.06564. 2017. https://arxiv.org/abs/1707.06564

42. Carlson D.F., Rysgaard S. Adapting open-source drone autopilots for real-time iceberg observations. MethodsX. 2018;5:1059-1072. http://dx.doi.org/10.1016/j.mex.2018.09.003

43. Simon G.A., Moore J.M., Clark A.J., McKinley P.K. Evo-ROS: integrating evolution and the robot operating system. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion. ACM, 2018; pp. 1386-1393. http://dx.doi.org/10.1145/3205651.3208269

44. Ebeid E., Skriver M., Terkildsen K.H., Jensen K. A survey of open-source UAV flight controllers and flight simulators. Microprocessors and Microsystems. 2018;61:11-20. http://dx.doi.org/10.1016/j.micpro.2018.05.002

45. Pop S., Luculescu M.C., Cristea L., Zamfira C.S., Boer A.L. Improving communication between unmanned aerial vehicles and ground control station using antenna tracking systems. In: Auer M., Zutin D. (eds) Online Engineering & Internet of Things. Lecture Notes in Networks and Systems. V. 22. Springer, Cham, 2018; pp. 532-539. https://doi. org/10.1007/978-3-319-64352-6_49

46. ArduPilot Documentation – [Electronic resource]: URL:http://ardupilot.org/ardupilot/index.html

47. Zhuravlev D.O., Naing Z.H. The evolution of control systems for unmanned aerial vehicles: from appearance to the present day. In: Achievements and Prospects of Modern Science. Proceed. of the International Scientific and Technical Conference. Neftekamsk: Scientific Publishing Center “Mir nauki”, 2017. Р. 57-87 (in Russ.).

48. Meier L., Tanskanen P., Heng L., Lee G.H. PIXHAWK: A micro aerial vehicle design for autonomous flight using onboard computer vision. Autonomous Robots. 2012;33(1-2):21-39. http://dx.doi.org/10.1007/s10514-012-9281-4

49. Li Y., Scanavino M., Capello E., Dabbene F. A novel distributed architecture for UAV indoor navigation. Transportation Research Procedia. 2018;35:13-22. http://dx.doi.org/10.1016/j.trpro.2018.12.003

50. Makarov I.M., Lokhin V.M. Intelligent automatic control systems. Moscow: Fizmatlit Publ., 2001. 576 p. (in Russ.).

51. Abeywardena D., Pounds P., Dissanayake G. Design and development of ReCOPTER: An open source ROSbased multi-rotor platform for research. In: Proceed. Austral. Conf. Robot. Autom. (ACRA). 2015. 10 p. http://hdl. handle.net/10453/117849

52. Meier L. Dynamic Robot Architecture for Robust Realtime Computer Vision: Doctoral Thesis. ETH Zürich, 2017. https://doi.org/10.3929/ethz-a-010874068

53. Koubaa A., Qureshi B. DroneTrack: Cloud-based real-time object tracking using unmanned aerial vehicles over the Internet. IEEE Access. 2018;6:13810-13824. https://doi.org/10.1109/ACCESS.2018.2811762

54. Lamping A.P., Ouwerkerk J.N., Cohen K. Multi-UAV Control and Supervision with ROS. In: Proceed. 2018 Aviation Technology, Integration, and Operations Conference. At Atlanta, GA, Volume: AIAA AVIATION Forum. 2018; p. 4245. https://doi.org/10.2514/6.2018-4245

55. Chen S., F Laefer D., Mangina E. State of technology review of civilian UAVs. Recent Patents on Engineering. 2016;10(3):160-174. https://doi.org/10.2174/1872212110666160712230039

56. Seo J., Paik J., Yim M. Modular reconfigurable robotics. Annual Review of Control, Robotics, and Autonomous Systems. 2019;2:63-88. https://doi.org/10.1146/annurev-control-053018-023834

57. Alattas R.J., Patel S., Sobh T. M. Evolutionary modular robotics: Survey and analysis. Journal of Intelligent & Robotic Systems. 2019;95(3-4):815-828. https://doi.org/10.1007/s10846-018-0902-9

58. Ostergaard E.H., Kassow K., Beck R., Lund H.H. Design of the ATRON lattice-based self-reconfigurable robot. Autonomous Robots. 2006;21(2):165-183. http://dx.doi.org/10.1007/s10514-006-8546-1

59. Garcia R.F.M., Lyder A., Christensen D.J., Stoy K. Reusable electronics and adaptable communication as implemented in the odin modular robot. In: Proceed. IEEE International Conference on Robotics and Automation. IEEE, 2009; pp. 1152-1158. http://dx.doi.org/10.1109/ROBOT.2009.5152811

60. Romanishin J. W., Gilpin K., Rus D. M-blocks: Momentum-driven, magnetic modular robots. In: Proc. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2013; pp. 4288-4295. https://doi.org/10.1109/IROS.2013.6696971

61. Yim M., Duff D.G., Roufas K.D. PolyBot: a modular reconfigurable robot. In: Proceed. of the IEEE International Conference on Robotics and Automation (ICRA’00). San Francisco, Calif, USA, 2000. V. 1. P. 514-520. https://doi.org/10.1109/ROBOT.2000.844106

62. Brunete A., Hernandj M., Gambao E., Torres J.E. A behaviour-based control architecture for heterogeneous modular, multi-configurable, chained micro-robots. Robotics and Autonomous Systems. 2012;60(12):1607-1624. https://doi.org/10.1016/j.robot.2012.09.019

63. Makarov I.M., Lokhin V.M. Knowledge processing technologies for autonomous mechatronic-modular reconfigurable robots control tasks. Informatsionnye tekhnologii (Information Technology). 2010;(S8):1-32 (in Russ.).

64. Makarov I.M. [et al.] Multi-agent robotic systems: examples and prospects of application. Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics, Automation, Control]. 2012;(2):22-32 (in Russ.).

65. Murata S., Kurokawa H. Self-organizing robots. Volume 77 of Springer tracts in advanced robotics. NY, USA: Springer, 2012. http://dx.doi.org/10.1007/978-4-431-54055-7

66. Guanghua Z., Zhicheng D., Wei W. Realization of a modular reconfigurable robot for rough terrain. In: Procced. of the 2006 IEEE International Conference on Mechatronics and Automation. 2006; pp. 289-294. http://dx.doi.org/10.1109/ICMA.2006.257529

67. Wolfe K.C., Moses M., Kutzer M., Chirikjian G.S. M 3 Express: a low-cost independently-mobile reconfigurable modular robot. In: Procced. of 2012 IEEE International Conference on Robotics and Automation. 2012; pp. 2704-2710. http://dx.doi.org/10.1109/ICRA.2012.6224971

68. O’Hara I., Paulos J., Davey J., Eckenstein N. Self-assembly of a swarm of autonomous boats into floating structures. In: Proceed. of the IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014; pp. 1234-1240. http://dx.doi.org/10.1109/ICRA.2014.6907011

69. Pavlyuk N.A., Krestovnikov K.D., Pykhov D.E. Mobile autonomous reconfigurable system. Problemy regionalnoi energetiki = Problems of Regional Energetics. 2018;1(36):125-135 (in Russ.). http://dx.doi.org/10.5281/zenodo.1217296

70. Andreev V.P., Kim V.L., Poduraev Yu.V. Network-based design of heterogeneous modular mobile robotic systems. Robototekhnika i tekhnicheskaya kibernetika = Robotics and Technical Cybernetics. 2016;3:23-29 (in Russ.).

71. Andreev V.P., Poduraev Yu.V. Functional-modular design of heterogeneous mobile robotic systems. In: Proceed. of the International Scientific and Technological Conference “Extreme Robotics”. Saint-Petersburg: AP4Print Publ., 2016. P. 39-49 (in Russ. / Engl.).

72. Lopota A.V., Yurevich E.I. Stages and development prospects of robotic systems design modular principle. Nauchno tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. Informatika. Telekommunikatsii. Upravlenie = St. Petersburg State Polytechnical University Journal. Computer Science. Telecommunication and Control Systems. 2013;1(164):98-103 (in Russ.).

73. Thakker R., Kamat A., Bharambe S., Cheddarwar S.S., Bhurchandi K.M. Rebis-reconfigurable bipedal snake robot. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2014; pp. 309-314. https://doi.org/10.1109/iros.2014.6942577

74. Andreev V.P., Kim V.L., Pletenev P.F. Hardware and software solution for rapid reconfiguration of heterogeneous robots. Mekhatronika, avtomatizatsiya, upravlenie = Mechatronics, automation, control. 2018;19(6):387-395 (in Russ.). http://novtex.ru/mech/eng/doi/mau.19.387-395.html

75. Andreev V.P., Pletenev P.F. Method of information interaction for distributed control systems of robots with modular architecture. Trudy SPIIRAN = SPIIRAS Proceedings. 2018;2(57):134-160 (in Russ.)]. https://doi.org/10.15622/sp.57.6

76. Kirsanov K. Software architecture of control system for heterogeneous group of mobile robots. Procedia Engineering. 2015;100:278-282. https://doi.org/10.1016/j.proeng.2015.01.368

77. Brunete A., Ranganath A., Segovia S., de Frutos J.P., Hernando M., Gambao E. Current trends in reconfigurable modular robots design. International Journal of Advanced Robotic Systems. 2017;14(3):1-21. https://doi.org/10.1177/1729881417710457

78. Yim M., White P., Park M., Sastra J. Modular self-reconfigurable robots. In: Encyclopedia of complexity and systems science / eds. R.A. Meyers. New York: Springer, 2009. P. 5618-5631. https://doi.org/10.1007/978-0-387-30440-3_334

79. Zhang Y., Roufas K. D., Yim M. Software architecture for modular self-reconfigurable robots. Intelligent Robots and Systems, 2001. Proceed. of the 2001 IEEE/RSJ International Conference on. IEEE, 2001. V. 4; pp. 2355-2360.

80. Liedke J., Matthias R., Winkler L., Wörn H. The collective self-reconfigurable modular organism (CoSMO). In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE, 2013; pp. 1-6. https://doi.org/10.1109/AIM.2013.6584059

81. Moeckel R., Jaquier C., Drapel K., Dittrich E. Exploring adaptive locomotion with YaMoR, a novel autonomous modular robot with Bluetooth interface. Industrial Robot: An International Journal. 2006;33(4):285-290. https://doi.org/10.1108/01439910610667908

82. Zykov V., Chan A., Lipson H. Molecubes: An open-source modular robotics kit. In: IROS-2007 SelfReconfigurable Robotics Workshop. 2007; pp. 3-6.

83. Qiao G., Song G., Zhang J., Sun H., Wang W., Song A. Design of transmote: a modular self-reconfigurable robot with versatile transformation capabilities. In: 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2012; pp. 1331-1336. https://doi.org/10.1109/ROBIO.2012.6491153

84. Davey J., Kwok N., Yim M. Emulating self-reconfigurable robots-design of the SMORES system. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2012; pp. 4464-4469. https://doi.org/10.1109/IROS.2012.6385845

85. ROS Index: Packages – [Electronic resource]: URL:https://index.ros.org/packages/

86. Buyval A., Afanasyev I., Magid E. Comparative analysis of ROS-based Monocular SLAM methods for indoor navigation. In: 9th International Conference on Machine Vision (ICMV 2016). International Society for Optics and Photonics, 2017. V. 10341. P. 103411K. http://dx.doi.org/10.1117/12.2268809

87. Lentin J. ROS Robotics Projects. Packt Publ. Ltd, 2017. 452 p.

88. Zhou C., Li F., Cao W., Wang C. Design and implementation of a novel obstacle avoidance scheme based on combination of CNN-based deep learning method and liDAR-based image processing approach. Journal of Intelligent & Fuzzy Systems. 2018;35(3):1-11. https://doi.org/10.3233/JIFS-169706

89. Hennes D., Claes D., Meeussen W., Tuyls K. Multi-robot collision avoidance with localization uncertainty. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems. Vol. 1. International Foundation for Autonomous Agents and Multiagent Systems, 20124 147-154.

90. Reid R., Cfnn A., Meiklejohn C., Boeing A., Braunl T. Cooperative multi-robot navigation, exploration, mapping and object detection with ROS. In: 2013 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2013;1083-1088. https://doi.org/10.1109/IVS.2013.6629610

91. Rubenstein M., Ahler C., Hoff N., Cabrera A., Nagpal R. Kilobot: A low cost robot with scalable operations designed for collective behaviors. Robotics and Autonomous Systems. 2014;62(7):966-975. https://doi.org/10.1016/j.robot.2013.08.006

92. Lee B. H. Y., Morrison J. R., Sharma R. Multi-UAV control testbed for persistent UAV presence: ROS GPS waypoint tracking package and centralized task allocation capability. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2017;1742-1750. https://doi.org/10.1109/ICUAS.2017.7991424

93. Siwek M., Besseghieur K., Baranowski L. The effects of the swarm configuration and the obstacles placement on control signals transmission delays in decentralized ROS-embedded group of mobile robots. AIP Conference Proceedings. AIP Publishing, 2018;2029(1):020069.

94. ArduPilot Swarming — Mission Planner documentation – [Electronic resource], URL:http://ardupilot.org/planner/docs/swarming.html


Supplementary files

1. Fig. 2. Household robot Willow Garage PR2
Subject
Type Исследовательские инструменты
View (73KB)    
Indexing metadata ▾

Review

For citations:


Romanov A.M. A review on control systems hardware and software for robots of various scale and purpose. Part 2. Service robotics. Russian Technological Journal. 2019;7(6):68-86. (In Russ.) https://doi.org/10.32362/2500-316X-2019-7-6-68-86

Views: 2383


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)