Modification of the WaldBoost algorithm to improve the efficiency of solving pattern recognition problems in real-time
https://doi.org/10.32362/2500-316X-2019-7-5-20-29
Abstract
About the Authors
A. N. ChesalinRussian Federation
Cand. of Sci. (Engineering), Associate Professor of the Chair of Computer and Information Security, Institute of Cybernetics,
78, Vernadskogo pr., Moscow 119454
S. Ya. Grodzenskiy
Russian Federation
Dr. of Sci., Professor of the Chair of Metrology and Standardization, Institute of Physics and Technology,
78, Vernadskogo pr., Moscow 119454
M. Yu. Nilov
Russian Federation
Postgraduate Student, the Chair of Metrology and Standardization, Institute of Physics and Technology,
78, Vernadskogo pr., Moscow 119454
A. N. Agafonov
Russian Federation
Master, the Chair of Computer and Information Security, Institute of Cybernetics,
78, Vernadskogo pr., Moscow 119454
References
1. Freund Y., Schapire R. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comp. & System Sci. 1997;55(1):119-139. https://doi.org/10.1006/jcss.1997.1504
2. Friedman J. Greedy function approximation: A gradient boosting machine. The Annals of Statistics. 2001;29(5):1189-1232. https://doi.org/10.1109/SMRLO.2016.83.
3. Wald A. Sequential Analysis. NY: John Wiley and Sons, 1947. 212 р.
4. Tartakovsky A., Nikiforov I., Basseville M. Sequential analysis: Hypothesis testing and changepoint detection. Boca Raton: CRC press/Taylor & Francis, 2015. 579 р.
5. Сhesalin A., Grodzenskiy S., Grodzenskiy Ya. About the effectiveness of the statistical sequential analysis in the reliability trials. In: 2016 Second Int. Symp. on Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO). Beer Sheva, Israel, February 15–18, 2016. P. 475-480. https://doi.org/10.1109/SMRLO.2016.83
6. Yanjing O., Nan C., Michael B. An efficient multivariate control charting mechanism based on SPRT. Int. J. Production Res. 2015;53(7):1937-1949. https://doi.org/10.1080/00207543.2014.925601
7. Sochman J., Matas J. WaldBoost – Learning for time constrained sequential detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). June 20–25, 2005. P. 150-156. https://doi.org/10.1109/CVPR.2005.373
8. Chesalin A., Grodzenskiy S. The algorithm of calculating the refined boundaries of sequential criteria based on the likelyhood ratio. In: Proceed. of the Int. Seminar on Electron Devices Design and Production (SED). April 23–24, 2019. Prague, Czech Republic, 2019. 4 p. IEEE Catalog Number: CFP19P59-CDR. https://doi.org/10.1109/SED.2019.8798445
9. Zhu J., Rosset S., Zou H., Hastie T. Multi-class AdaBoost. Statistics and its Interface. 2006;2(1): 21 p. https://doi.org/10.4310/SII.2009.v2.n3.a8
Supplementary files
|
1. Fig. 1. Simulated datasets (training sample): "○“corresponds to the class y = +1, ” × " – to the class y = 1. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(806KB)
|
Indexing metadata ▾ |
Review
For citations:
Chesalin A.N., Grodzenskiy S.Ya., Nilov M.Yu., Agafonov A.N. Modification of the WaldBoost algorithm to improve the efficiency of solving pattern recognition problems in real-time. Russian Technological Journal. 2019;7(5):20-29. (In Russ.) https://doi.org/10.32362/2500-316X-2019-7-5-20-29