Preview

Russian Technological Journal

Advanced search

Complex Refractive Index of Strontium Titanate in the Terahertz Frequency Range

https://doi.org/10.32362/2500-316X-2019-7-4-71-80

Abstract

The recent progress in terahertz time-domain spectroscopy enables the accurate and reliable measurements of dielectric properties in comparison with the traditional far-infrared spectroscopy using an incoherent light source. The broadband THz-TDS is a powerful tool to determine the real and imaginary parts of a complex dielectric constant by the transmission which allows to detect the parameters of the soft modes in ferroelectrics. In this work, the terahertz time-domain spectroscopy was used to investigate the dependence of the complex refractive index of a single-crystal quantum paraelectric strontium titanate in the terahertz frequency range from 0.3 to 2 THz. It was shown that the low-frequency terahertz response of the material is determined by the soft phonon mode TO1. The measured experimental dependences showed a good agreement with the theoretical curves obtained from the analysis of the Lorentz oscillator model for the complex dielectric constant of strontium titanate. The obtained results are necessary for understanding the principle of possibility to manipulate the order parameter in ferroelectric materials and can be used to create energy-efficient memory devices with a speed of recording information close to the theoretical limit.

About the Authors

V. R. Bilyk
MIREA – Russian Technological University (RTU MIREA)
Russian Federation

Postgraduate Student of the Chair of Nanoelectronics, Institute of Physics and Technology; researcher, Laboratory of Ultrafast
Dynamics of Ferroics of the Chair of Nanoelectronics

78, Vernadskogo pr., Moscow 119454, Russia

Scopus Author ID: 57194048515

ResearcherID: N-9662-2015



K. A. Grishunin
MIREA – Russian Technological University (RTU MIREA)
Russian Federation

Postgraduate Student of the Chair of Nanoelectronics, Institute of Physics and Technology

78, Vernadskogo pr., Moscow 119454, Russia

Scopus Author ID: 56968091600

ResearcherID: Q-1005-2017



References

1. Ostapchuk T., Petzelt J., Železný V., Pashkin A., Pokorný J., Drbohlav I., Kužel R., Rafaja D., Gorshunov B.P., Dressel M., Ohly C., Hoffmann-Eifert S., Waser R. Origin of soft-mode stiffening and reduced dielectric response in SrTiO3 thin films. Phys. Rev. B. 2002; 66(23):235406-12. https://doi.org/10.1103/PhysRevB.66.235406

2. Barker A.S., Tinkham M. Far-infrared ferroelectric vibration mode in SrTiO3. Phys. Rev. 1962; 125(5):1527-1530. https://doi.org/10.1103/PhysRev.125.1527

3. Fedorov I., Železn V., Petzelt J., Trepakov V., Jelínek M., Trtík V., Čer&ňansk M., Studni&ccaron. Far-infrared spectroscopy of a SrTiO3 thin film. Ferroelectrics. 1998; 208-209(1):413-427. https://doi.org/10.1080/00150199808014890

4. Spitzer W.G., Miller R.C., Kleinman D.A., Howarth L.E. Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2. Phys. Rev. 1962; 126(5):1710-1721. https://doi.org/10.1103/PhysRev.126.1710

5. Müller K.A., Burkard H. SrTiO3: An intrinsic quantum paraelectric below 4 K. Phys. Rev. B. 1979; 19(7):3593-3602. https://doi.org/10.1103/PhysRevB.19.3593

6. Ostapchuk T., Petzelt J., Železný V., Pashkin A., Pokorný J., Drbohlav I., Kužel R., Rafaja D., Gorshunov B.P., Dressel M., Ohly C., Hoffmann-Eifert S., Waser R. Origin of soft-mode stiffening and reduced dielectric response in SrTiO3 thin films. Phys. Rev. B. 2002; 66(23):235406-12. https://doi.org/10.1103/PhysRevB.66.235406

7. Fedorov I., Železn V., Petzelt J., Trepakov V., Jelínek M., Trtík V., Čer&ňansk M., Studni&ccaron. Far-infrared spectroscopy of a SrTiO3 thin film. Ferroelectrics. 1998; 208-209(1):413-427. https://doi.org/10.1080/00150199808014890

8. Bellingeri E., Pellegrino L., Marré D., Pallecchi I., Siri A.S. All-SrTiO3 field effect devices made by anodic oxidation of epitaxial semiconducting thin films. J. Appl. Phys. 2003; 94(9):5976-5981. https://doi.org/10.1063/1.1613373

9. Müller K.A., Burkard H. SrTiO3: An intrinsic quantum paraelectric below 4 K. Phys. Rev. B. 1979; 19(7):3593-3602. https://doi.org/10.1103/PhysRevB.19.3593

10. Saifi M.A., Cross L.E. Dielectric properties of strontium titanate at low temperature. Phys. Rev. B. 1970; 2(3):677-684. https://doi.org/10.1103/PhysRevB.2.677

11. Bellingeri E., Pellegrino L., Marré D., Pallecchi I., Siri A.S. All-SrTiO3 field effect devices made by anodic oxidation of epitaxial semiconducting thin films. J. Appl. Phys. 2003; 94(9):5976-5981. https://doi.org/10.1063/1.1613373

12. Wang Z., Cao M., Yao Z., Zhang Q., Song Z., Hu W., Xu Q., Hao H., Liu H., Yu Z. Giant permittivity and low dielectric loss of SrTiO3 ceramics sintered in nitrogen atmosphere. J. Eur. Ceram. Soc. 2014; 34(7):1755-1760. https://doi.org/10.1016/j.jeurceramsoc.2014.01.015

13. Tagantsev A.K., Sherman V.O., Astafiev K.F., Venkatesh J., Setter N. Ferroelectric materials for microwave tunable applications. J. Electroceramics. 2003; 11(1/2):5-66. https://doi.org/10.1023/B:JECR.0000015661.81386.e6

14. Saifi M.A., Cross L.E. Dielectric properties of strontium titanate at low temperature. Phys. Rev. B. 1970; 2(3):677-684. https://doi.org/10.1103/PhysRevB.2.677

15. Wang Z., Cao M., Yao Z., Zhang Q., Song Z., Hu W., Xu Q., Hao H., Liu H., Yu Z. Giant permittivity and low dielectric loss of SrTiO3 ceramics sintered in nitrogen atmosphere. J. Eur. Ceram. Soc. 2014; 34(7):1755-1760. https://doi.org/10.1016/j.jeurceramsoc.2014.01.015

16. Weaver H.E. Dielectric properties of single crystals of SrTiO3 at low temperatures. J. Phys. Chem. Solids. 1959; 11(3–4):274-277. https://doi.org/10.1016/0022-3697(59)90226-4

17. Tagantsev A.K., Sherman V.O., Astafiev K.F., Venkatesh J., Setter N. Ferroelectric materials for microwave tunable applications. J. Electroceramics. 2003; 11(1/2):5-66. https://doi.org/10.1023/B:JECR.0000015661.81386.e6

18. Lippmaa M., Nakagawa N., Kawasaki M., Ohashi S., Inaguma Y., Itoh M., Koinuma H. Step-flow growth of SrTiO3 thin films with a dielectric constant exceeding 104. Appl. Phys. Lett. 1999; 74(23):3543-3545. https://doi.org/10.1063/1.124155

19. Jorel C., Vallée C., Gonon P., Gourvest E., Dubarry C., Defay E. High performance metal-insulator-metal capacitor using a SrTiO3/ZrO2 bilayer. Appl. Phys. Lett. 2009; 94(25):253502-3. https://doi.org/10.1063/1.3158951

20. Weaver H.E. Dielectric properties of single crystals of SrTiO3 at low temperatures. J. Phys. Chem. Solids. 1959; 11(3–4):274-277. https://doi.org/10.1016/0022-3697(59)90226-4

21. Hou C., Huang W., Zhao W., Zhang D., Yin Y., Li X. Ultrahigh energy density in SrTiO3 film capacitors. ACS Appl. Mater. Interfaces. 2017; 9(24):20484-20490. http://dx.doi.org/10.1021/acsami.7b02225

22. Lippmaa M., Nakagawa N., Kawasaki M., Ohashi S., Inaguma Y., Itoh M., Koinuma H. Step-flow growth of SrTiO3 thin films with a dielectric constant exceeding 104. Appl. Phys. Lett. 1999; 74(23):3543-3545. https://doi.org/10.1063/1.124155

23. Sirenko A.A., Bernhard C., Golnik A., Clark A.M., Hao J., Si W., Xi X.X. Soft-mode hardening in SrTiO3 thin films. Nature. 2000; 404(6776):373–376. http://dx.doi.org/10.1038/35006023

24. Jorel C., Vallée C., Gonon P., Gourvest E., Dubarry C., Defay E. High performance metal-insulator-metal capacitor using a SrTiO3/ZrO2 bilayer. Appl. Phys. Lett. 2009; 94(25):253502-3. https://doi.org/10.1063/1.3158951

25. Skoromets V., Kadlec F., Kadlec C., Němec H., Rychetsky I., Panaitov G., Müller V., Fattakhova-Rohlfing D., Moch P., Kužel P. Tuning of dielectric properties of SrTiO3 in the terahertz range. Phys. Rev. B. 2011; 84(17):174121-10. https://doi.org/10.1103/PhysRevB.84.174121

26. Hou C., Huang W., Zhao W., Zhang D., Yin Y., Li X. Ultrahigh energy density in SrTiO3 film capacitors. ACS Appl. Mater. Interfaces. 2017; 9(24):20484-20490. http://dx.doi.org/10.1021/acsami.7b02225

27. Wu L., Jiang L., Sheng Q., Ding X., Yao J. Optical tuning of dielectric properties of SrTiO3:Fe in the terahertz range. Opt. Lett. 2013; 38(14):2581-2583. https://doi.org/10.1364/OL.38.002581

28. Sirenko A.A., Bernhard C., Golnik A., Clark A.M., Hao J., Si W., Xi X.X. Soft-mode hardening in SrTiO3 thin films. Nature. 2000; 404(6776):373–376. http://dx.doi.org/10.1038/35006023

29. Kužel P., Kadlec F., Němec H., Ott R., Hollmann E., Klein N. Dielectric tunability of SrTiO3 thin films in the terahertz range. Appl. Phys. Lett. 2006; 88(10): 102901-3. https://doi.org/10.1063/1.2183370

30. Skoromets V., Kadlec F., Kadlec C., Němec H., Rychetsky I., Panaitov G., Müller V., Fattakhova-Rohlfing D., Moch P., Kužel P. Tuning of dielectric properties of SrTiO3 in the terahertz range. Phys. Rev. B. 2011; 84(17):174121-10. https://doi.org/10.1103/PhysRevB.84.174121

31. Mantsch H.H., Naumann D. Terahertz spectroscopy: The renaissance of far infrared spectroscopy. J. Mol. Struct. 2010; 964(1-3):1-4. https://doi.org/10.1016/j.molstruc.2009.12.022

32. Wu L., Jiang L., Sheng Q., Ding X., Yao J. Optical tuning of dielectric properties of SrTiO3:Fe in the terahertz range. Opt. Lett. 2013; 38(14):2581-2583. https://doi.org/10.1364/OL.38.002581

33. van Exter M., Fattinger C., Grischkowsky D. Terahertz time-domain spectroscopy of water vapor. Opt.Lett. 1989; 14(20):1128-1130. https://doi.org/10.1364/OL.14.001128

34. Kužel P., Kadlec F., Němec H., Ott R., Hollmann E., Klein N. Dielectric tunability of SrTiO3 thin films in the terahertz range. Appl. Phys. Lett. 2006; 88(10): 102901-3. https://doi.org/10.1063/1.2183370

35. Grischkowsky D., Keiding S., van Exter M., Fattinger C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B. 1990; 7(10):2006-2015. https://doi.org/10.1364/JOSAB.7.002006

36. Mantsch H.H., Naumann D. Terahertz spectroscopy: The renaissance of far infrared spectroscopy. J. Mol. Struct. 2010; 964(1-3):1-4. https://doi.org/10.1016/j.molstruc.2009.12.022

37. Tonouchi M. Cutting-edge terahertz technology. Nat. Photonics. 2007; 1(2):97-105. https://doi.org/10.1038/nphoton.2007.3

38. van Exter M., Fattinger C., Grischkowsky D. Terahertz time-domain spectroscopy of water vapor. Opt.Lett. 1989; 14(20):1128-1130. https://doi.org/10.1364/OL.14.001128

39. Ferguson B., Zhang X.-C. Materials for terahertz science and technology. Nat. Mater. 2002; 1(1):26-33. https://doi.org/10.1038/nmat708

40. Grischkowsky D., Keiding S., van Exter M., Fattinger C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B. 1990; 7(10):2006-2015. https://doi.org/10.1364/JOSAB.7.002006

41. Nilsen W.G., Skinner J.G. Raman spectrum of strontium titanate. J. Chem. Phys. 1968; 48(5):2240-2248. https://doi.org/10.1063/1.1669418

42. Tonouchi M. Cutting-edge terahertz technology. Nat. Photonics. 2007; 1(2):97-105. https://doi.org/10.1038/nphoton.2007.3

43. Han J., Wan F., Zhu Z., Zhang W. Dielectric response of soft mode in ferroelectric SrTiO3. Appl. Phys. Lett. 2007; 90(3):031104. https://doi.org/10.1063/1.2431448

44. Ferguson B., Zhang X.-C. Materials for terahertz science and technology. Nat. Mater. 2002; 1(1):26-33. https://doi.org/10.1038/nmat708

45. Misra M., Kotani K., Kawayama I., Murakami H., Tonouchi M. Observation of TO1 soft mode in SrTiO3 films by terahertz time domain spectroscopy. Appl. Phys. Lett. 2005; 87(18):182909. https://doi.org/10.1063/1.2128039

46. Nilsen W.G., Skinner J.G. Raman spectrum of strontium titanate. J. Chem. Phys. 1968; 48(5):2240-2248. https://doi.org/10.1063/1.1669418

47. Tkach A., Vilarinho P.M., Kholkin A.L., Pashkin A., Veljko S., Petzelt J. Broad-band dielectric spectroscopy analysis of relaxational dynamics in Mn-doped SrTiO3 ceramics. Phys. Rev. B. 2006; 73(10):104113-7. https://doi.org/10.1103/PhysRevB.73.104113

48. Han J., Wan F., Zhu Z., Zhang W. Dielectric response of soft mode in ferroelectric SrTiO3. Appl. Phys. Lett. 2007; 90(3):031104. https://doi.org/10.1063/1.2431448

49. Kittel C. Introduction to Solid State Physics. 7th ed. 1975. New York: Wiley, 1975. 688 р.

50. Misra M., Kotani K., Kawayama I., Murakami H., Tonouchi M. Observation of TO1 soft mode in SrTiO3 films by terahertz time domain spectroscopy. Appl. Phys. Lett. 2005; 87(18):182909. https://doi.org/10.1063/1.2128039

51. Khaber L., Beniaiche A., Hachemi A. Electronic and optical properties of SrTiO3 under pressure effect: Ab initio study. Solid State Commun. 2014; 189:32-37. https://doi.org/10.1016/j.ssc.2014.03.018

52. Tkach A., Vilarinho P.M., Kholkin A.L., Pashkin A., Veljko S., Petzelt J. Broad-band dielectric spectroscopy analysis of relaxational dynamics in Mn-doped SrTiO3 ceramics. Phys. Rev. B. 2006; 73(10):104113-7. https://doi.org/10.1103/PhysRevB.73.104113

53. Verma A., Raghavan S., Stemmer S., Jena D. Ferroelectric transition in compressively strained SrTiO3 thin films. Appl. Phys. Lett. 2015; 107(19):192908. https://doi.org/10.1063/1.4935592

54. Kittel C. Introduction to Solid State Physics. 7th ed. 1975. New York: Wiley, 1975. 688 р.

55. Tikhomirov O., Jiang H., Levy J. Local ferroelectricity in SrTiO3 thin films. Phys. Rev. Lett. 2002; 89(14):147601-4. http://dx.doi.org/10.1103/PhysRevLett.89.147601

56. Khaber L., Beniaiche A., Hachemi A. Electronic and optical properties of SrTiO3 under pressure effect: Ab initio study. Solid State Commun. 2014; 189:32-37. https://doi.org/10.1016/j.ssc.2014.03.018

57. Kumar A.S., Suresh P., Kumar M.M., Srikanth H., Post M.L., Sahner K., Moos R., Srinath S. Magnetic and ferroelectric properties of Fe doped SrTiO3-δ films. J. Phys. Conf. Ser. 2010; 200(9):092010-4. https://doi.org/10.1088/1742-6596/200/9/092010

58. Verma A., Raghavan S., Stemmer S., Jena D. Ferroelectric transition in compressively strained SrTiO3 thin films. Appl. Phys. Lett. 2015; 107(19):192908. https://doi.org/10.1063/1.4935592

59. Valdmanis J., Mourou G. Subpicosecond electrooptic sampling: Principles and applications. IEEE J.Quantum Electron. 1986; 22(1):69-78. https://doi.org/10.1109/JQE.1986.1072867

60. Tikhomirov O., Jiang H., Levy J. Local ferroelectricity in SrTiO3 thin films. Phys. Rev. Lett. 2002; 89(14):147601-4. http://dx.doi.org/10.1103/PhysRevLett.89.147601

61. Nahata A., Auston D.H., Heinz T.F., Wu C. Coherent detection of freely propagating terahertz radiation by electro-optic sampling. Appl. Phys. Lett. 1996; 68(2):150-152. https://doi.org/10.1063/1.116130

62. Kumar A.S., Suresh P., Kumar M.M., Srikanth H., Post M.L., Sahner K., Moos R., Srinath S. Magnetic and ferroelectric properties of Fe doped SrTiO3-δ films. J. Phys. Conf. Ser. 2010; 200(9):092010-4. https://doi.org/10.1088/1742-6596/200/9/092010

63. Jepsen P.U., Cooke D.G., Koch M. Terahertz spectroscopy and imaging – Modern techniques and applications. Laser Photon. Rev. 2011; 5(1):124-166. https://doi.org/10.1002/lpor.201000011

64. Valdmanis J., Mourou G. Subpicosecond electrooptic sampling: Principles and applications. IEEE J.Quantum Electron. 1986; 22(1):69-78. https://doi.org/10.1109/JQE.1986.1072867

65. Jepsen P.U., Fischer B.M. Dynamic range in terahertz time-domain transmission and reflection spectroscopy. Opt. Lett. 2005; 30(1):29-31. https://doi.org/10.1364/OL.30.000029

66. Nahata A., Auston D.H., Heinz T.F., Wu C. Coherent detection of freely propagating terahertz radiation by electro-optic sampling. Appl. Phys. Lett. 1996; 68(2):150-152. https://doi.org/10.1063/1.116130

67. Kuzmany H. The Dielectric Function. In: Solid-State Spectroscopy. Springer, 1998. P. 101-120. https://doi.org/10.1007/978-3-662-03594-8

68. Jepsen P.U., Cooke D.G., Koch M. Terahertz spectroscopy and imaging – Modern techniques and applications. Laser Photon. Rev. 2011; 5(1):124-166. https://doi.org/10.1002/lpor.201000011

69. Jepsen P.U., Fischer B.M. Dynamic range in terahertz time-domain transmission and reflection spectroscopy. Opt. Lett. 2005; 30(1):29-31. https://doi.org/10.1364/OL.30.000029

70. Kuzmany H. The Dielectric Function. In: Solid-State Spectroscopy. Springer, 1998. P. 101-120. https://doi.org/10.1007/978-3-662-03594-8


Supplementary files

1. Fig. 1. Schema of the experimental setup and the principle of electro-optical detection of THz radiation. Solid black lines indicate the polarization of the initially incident probing radiation
Subject
Type Research Instrument
View (167KB)    
Indexing metadata ▾

Review

For citations:


Bilyk V.R., Grishunin K.A. Complex Refractive Index of Strontium Titanate in the Terahertz Frequency Range. Russian Technological Journal. 2019;7(4):71-80. (In Russ.) https://doi.org/10.32362/2500-316X-2019-7-4-71-80

Views: 1247


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)