Complex Refractive Index of Strontium Titanate in the Terahertz Frequency Range
https://doi.org/10.32362/2500-316X-2019-7-4-71-80
Abstract
The recent progress in terahertz time-domain spectroscopy enables the accurate and reliable measurements of dielectric properties in comparison with the traditional far-infrared spectroscopy using an incoherent light source. The broadband THz-TDS is a powerful tool to determine the real and imaginary parts of a complex dielectric constant by the transmission which allows to detect the parameters of the soft modes in ferroelectrics. In this work, the terahertz time-domain spectroscopy was used to investigate the dependence of the complex refractive index of a single-crystal quantum paraelectric strontium titanate in the terahertz frequency range from 0.3 to 2 THz. It was shown that the low-frequency terahertz response of the material is determined by the soft phonon mode TO1. The measured experimental dependences showed a good agreement with the theoretical curves obtained from the analysis of the Lorentz oscillator model for the complex dielectric constant of strontium titanate. The obtained results are necessary for understanding the principle of possibility to manipulate the order parameter in ferroelectric materials and can be used to create energy-efficient memory devices with a speed of recording information close to the theoretical limit.
About the Authors
V. R. BilykRussian Federation
Postgraduate Student of the Chair of Nanoelectronics, Institute of Physics and Technology; researcher, Laboratory of Ultrafast
Dynamics of Ferroics of the Chair of Nanoelectronics
78, Vernadskogo pr., Moscow 119454, Russia
Scopus Author ID: 57194048515
ResearcherID: N-9662-2015
K. A. Grishunin
Russian Federation
Postgraduate Student of the Chair of Nanoelectronics, Institute of Physics and Technology
78, Vernadskogo pr., Moscow 119454, Russia
Scopus Author ID: 56968091600
ResearcherID: Q-1005-2017
References
1. Ostapchuk T., Petzelt J., Železný V., Pashkin A., Pokorný J., Drbohlav I., Kužel R., Rafaja D., Gorshunov B.P., Dressel M., Ohly C., Hoffmann-Eifert S., Waser R. Origin of soft-mode stiffening and reduced dielectric response in SrTiO3 thin films. Phys. Rev. B. 2002; 66(23):235406-12. https://doi.org/10.1103/PhysRevB.66.235406
2. Barker A.S., Tinkham M. Far-infrared ferroelectric vibration mode in SrTiO3. Phys. Rev. 1962; 125(5):1527-1530. https://doi.org/10.1103/PhysRev.125.1527
3. Fedorov I., Železn V., Petzelt J., Trepakov V., Jelínek M., Trtík V., Čer&ňansk M., Studni&ccaron. Far-infrared spectroscopy of a SrTiO3 thin film. Ferroelectrics. 1998; 208-209(1):413-427. https://doi.org/10.1080/00150199808014890
4. Spitzer W.G., Miller R.C., Kleinman D.A., Howarth L.E. Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2. Phys. Rev. 1962; 126(5):1710-1721. https://doi.org/10.1103/PhysRev.126.1710
5. Müller K.A., Burkard H. SrTiO3: An intrinsic quantum paraelectric below 4 K. Phys. Rev. B. 1979; 19(7):3593-3602. https://doi.org/10.1103/PhysRevB.19.3593
6. Ostapchuk T., Petzelt J., Železný V., Pashkin A., Pokorný J., Drbohlav I., Kužel R., Rafaja D., Gorshunov B.P., Dressel M., Ohly C., Hoffmann-Eifert S., Waser R. Origin of soft-mode stiffening and reduced dielectric response in SrTiO3 thin films. Phys. Rev. B. 2002; 66(23):235406-12. https://doi.org/10.1103/PhysRevB.66.235406
7. Fedorov I., Železn V., Petzelt J., Trepakov V., Jelínek M., Trtík V., Čer&ňansk M., Studni&ccaron. Far-infrared spectroscopy of a SrTiO3 thin film. Ferroelectrics. 1998; 208-209(1):413-427. https://doi.org/10.1080/00150199808014890
8. Bellingeri E., Pellegrino L., Marré D., Pallecchi I., Siri A.S. All-SrTiO3 field effect devices made by anodic oxidation of epitaxial semiconducting thin films. J. Appl. Phys. 2003; 94(9):5976-5981. https://doi.org/10.1063/1.1613373
9. Müller K.A., Burkard H. SrTiO3: An intrinsic quantum paraelectric below 4 K. Phys. Rev. B. 1979; 19(7):3593-3602. https://doi.org/10.1103/PhysRevB.19.3593
10. Saifi M.A., Cross L.E. Dielectric properties of strontium titanate at low temperature. Phys. Rev. B. 1970; 2(3):677-684. https://doi.org/10.1103/PhysRevB.2.677
11. Bellingeri E., Pellegrino L., Marré D., Pallecchi I., Siri A.S. All-SrTiO3 field effect devices made by anodic oxidation of epitaxial semiconducting thin films. J. Appl. Phys. 2003; 94(9):5976-5981. https://doi.org/10.1063/1.1613373
12. Wang Z., Cao M., Yao Z., Zhang Q., Song Z., Hu W., Xu Q., Hao H., Liu H., Yu Z. Giant permittivity and low dielectric loss of SrTiO3 ceramics sintered in nitrogen atmosphere. J. Eur. Ceram. Soc. 2014; 34(7):1755-1760. https://doi.org/10.1016/j.jeurceramsoc.2014.01.015
13. Tagantsev A.K., Sherman V.O., Astafiev K.F., Venkatesh J., Setter N. Ferroelectric materials for microwave tunable applications. J. Electroceramics. 2003; 11(1/2):5-66. https://doi.org/10.1023/B:JECR.0000015661.81386.e6
14. Saifi M.A., Cross L.E. Dielectric properties of strontium titanate at low temperature. Phys. Rev. B. 1970; 2(3):677-684. https://doi.org/10.1103/PhysRevB.2.677
15. Wang Z., Cao M., Yao Z., Zhang Q., Song Z., Hu W., Xu Q., Hao H., Liu H., Yu Z. Giant permittivity and low dielectric loss of SrTiO3 ceramics sintered in nitrogen atmosphere. J. Eur. Ceram. Soc. 2014; 34(7):1755-1760. https://doi.org/10.1016/j.jeurceramsoc.2014.01.015
16. Weaver H.E. Dielectric properties of single crystals of SrTiO3 at low temperatures. J. Phys. Chem. Solids. 1959; 11(3–4):274-277. https://doi.org/10.1016/0022-3697(59)90226-4
17. Tagantsev A.K., Sherman V.O., Astafiev K.F., Venkatesh J., Setter N. Ferroelectric materials for microwave tunable applications. J. Electroceramics. 2003; 11(1/2):5-66. https://doi.org/10.1023/B:JECR.0000015661.81386.e6
18. Lippmaa M., Nakagawa N., Kawasaki M., Ohashi S., Inaguma Y., Itoh M., Koinuma H. Step-flow growth of SrTiO3 thin films with a dielectric constant exceeding 104. Appl. Phys. Lett. 1999; 74(23):3543-3545. https://doi.org/10.1063/1.124155
19. Jorel C., Vallée C., Gonon P., Gourvest E., Dubarry C., Defay E. High performance metal-insulator-metal capacitor using a SrTiO3/ZrO2 bilayer. Appl. Phys. Lett. 2009; 94(25):253502-3. https://doi.org/10.1063/1.3158951
20. Weaver H.E. Dielectric properties of single crystals of SrTiO3 at low temperatures. J. Phys. Chem. Solids. 1959; 11(3–4):274-277. https://doi.org/10.1016/0022-3697(59)90226-4
21. Hou C., Huang W., Zhao W., Zhang D., Yin Y., Li X. Ultrahigh energy density in SrTiO3 film capacitors. ACS Appl. Mater. Interfaces. 2017; 9(24):20484-20490. http://dx.doi.org/10.1021/acsami.7b02225
22. Lippmaa M., Nakagawa N., Kawasaki M., Ohashi S., Inaguma Y., Itoh M., Koinuma H. Step-flow growth of SrTiO3 thin films with a dielectric constant exceeding 104. Appl. Phys. Lett. 1999; 74(23):3543-3545. https://doi.org/10.1063/1.124155
23. Sirenko A.A., Bernhard C., Golnik A., Clark A.M., Hao J., Si W., Xi X.X. Soft-mode hardening in SrTiO3 thin films. Nature. 2000; 404(6776):373–376. http://dx.doi.org/10.1038/35006023
24. Jorel C., Vallée C., Gonon P., Gourvest E., Dubarry C., Defay E. High performance metal-insulator-metal capacitor using a SrTiO3/ZrO2 bilayer. Appl. Phys. Lett. 2009; 94(25):253502-3. https://doi.org/10.1063/1.3158951
25. Skoromets V., Kadlec F., Kadlec C., Němec H., Rychetsky I., Panaitov G., Müller V., Fattakhova-Rohlfing D., Moch P., Kužel P. Tuning of dielectric properties of SrTiO3 in the terahertz range. Phys. Rev. B. 2011; 84(17):174121-10. https://doi.org/10.1103/PhysRevB.84.174121
26. Hou C., Huang W., Zhao W., Zhang D., Yin Y., Li X. Ultrahigh energy density in SrTiO3 film capacitors. ACS Appl. Mater. Interfaces. 2017; 9(24):20484-20490. http://dx.doi.org/10.1021/acsami.7b02225
27. Wu L., Jiang L., Sheng Q., Ding X., Yao J. Optical tuning of dielectric properties of SrTiO3:Fe in the terahertz range. Opt. Lett. 2013; 38(14):2581-2583. https://doi.org/10.1364/OL.38.002581
28. Sirenko A.A., Bernhard C., Golnik A., Clark A.M., Hao J., Si W., Xi X.X. Soft-mode hardening in SrTiO3 thin films. Nature. 2000; 404(6776):373–376. http://dx.doi.org/10.1038/35006023
29. Kužel P., Kadlec F., Němec H., Ott R., Hollmann E., Klein N. Dielectric tunability of SrTiO3 thin films in the terahertz range. Appl. Phys. Lett. 2006; 88(10): 102901-3. https://doi.org/10.1063/1.2183370
30. Skoromets V., Kadlec F., Kadlec C., Němec H., Rychetsky I., Panaitov G., Müller V., Fattakhova-Rohlfing D., Moch P., Kužel P. Tuning of dielectric properties of SrTiO3 in the terahertz range. Phys. Rev. B. 2011; 84(17):174121-10. https://doi.org/10.1103/PhysRevB.84.174121
31. Mantsch H.H., Naumann D. Terahertz spectroscopy: The renaissance of far infrared spectroscopy. J. Mol. Struct. 2010; 964(1-3):1-4. https://doi.org/10.1016/j.molstruc.2009.12.022
32. Wu L., Jiang L., Sheng Q., Ding X., Yao J. Optical tuning of dielectric properties of SrTiO3:Fe in the terahertz range. Opt. Lett. 2013; 38(14):2581-2583. https://doi.org/10.1364/OL.38.002581
33. van Exter M., Fattinger C., Grischkowsky D. Terahertz time-domain spectroscopy of water vapor. Opt.Lett. 1989; 14(20):1128-1130. https://doi.org/10.1364/OL.14.001128
34. Kužel P., Kadlec F., Němec H., Ott R., Hollmann E., Klein N. Dielectric tunability of SrTiO3 thin films in the terahertz range. Appl. Phys. Lett. 2006; 88(10): 102901-3. https://doi.org/10.1063/1.2183370
35. Grischkowsky D., Keiding S., van Exter M., Fattinger C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B. 1990; 7(10):2006-2015. https://doi.org/10.1364/JOSAB.7.002006
36. Mantsch H.H., Naumann D. Terahertz spectroscopy: The renaissance of far infrared spectroscopy. J. Mol. Struct. 2010; 964(1-3):1-4. https://doi.org/10.1016/j.molstruc.2009.12.022
37. Tonouchi M. Cutting-edge terahertz technology. Nat. Photonics. 2007; 1(2):97-105. https://doi.org/10.1038/nphoton.2007.3
38. van Exter M., Fattinger C., Grischkowsky D. Terahertz time-domain spectroscopy of water vapor. Opt.Lett. 1989; 14(20):1128-1130. https://doi.org/10.1364/OL.14.001128
39. Ferguson B., Zhang X.-C. Materials for terahertz science and technology. Nat. Mater. 2002; 1(1):26-33. https://doi.org/10.1038/nmat708
40. Grischkowsky D., Keiding S., van Exter M., Fattinger C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B. 1990; 7(10):2006-2015. https://doi.org/10.1364/JOSAB.7.002006
41. Nilsen W.G., Skinner J.G. Raman spectrum of strontium titanate. J. Chem. Phys. 1968; 48(5):2240-2248. https://doi.org/10.1063/1.1669418
42. Tonouchi M. Cutting-edge terahertz technology. Nat. Photonics. 2007; 1(2):97-105. https://doi.org/10.1038/nphoton.2007.3
43. Han J., Wan F., Zhu Z., Zhang W. Dielectric response of soft mode in ferroelectric SrTiO3. Appl. Phys. Lett. 2007; 90(3):031104. https://doi.org/10.1063/1.2431448
44. Ferguson B., Zhang X.-C. Materials for terahertz science and technology. Nat. Mater. 2002; 1(1):26-33. https://doi.org/10.1038/nmat708
45. Misra M., Kotani K., Kawayama I., Murakami H., Tonouchi M. Observation of TO1 soft mode in SrTiO3 films by terahertz time domain spectroscopy. Appl. Phys. Lett. 2005; 87(18):182909. https://doi.org/10.1063/1.2128039
46. Nilsen W.G., Skinner J.G. Raman spectrum of strontium titanate. J. Chem. Phys. 1968; 48(5):2240-2248. https://doi.org/10.1063/1.1669418
47. Tkach A., Vilarinho P.M., Kholkin A.L., Pashkin A., Veljko S., Petzelt J. Broad-band dielectric spectroscopy analysis of relaxational dynamics in Mn-doped SrTiO3 ceramics. Phys. Rev. B. 2006; 73(10):104113-7. https://doi.org/10.1103/PhysRevB.73.104113
48. Han J., Wan F., Zhu Z., Zhang W. Dielectric response of soft mode in ferroelectric SrTiO3. Appl. Phys. Lett. 2007; 90(3):031104. https://doi.org/10.1063/1.2431448
49. Kittel C. Introduction to Solid State Physics. 7th ed. 1975. New York: Wiley, 1975. 688 р.
50. Misra M., Kotani K., Kawayama I., Murakami H., Tonouchi M. Observation of TO1 soft mode in SrTiO3 films by terahertz time domain spectroscopy. Appl. Phys. Lett. 2005; 87(18):182909. https://doi.org/10.1063/1.2128039
51. Khaber L., Beniaiche A., Hachemi A. Electronic and optical properties of SrTiO3 under pressure effect: Ab initio study. Solid State Commun. 2014; 189:32-37. https://doi.org/10.1016/j.ssc.2014.03.018
52. Tkach A., Vilarinho P.M., Kholkin A.L., Pashkin A., Veljko S., Petzelt J. Broad-band dielectric spectroscopy analysis of relaxational dynamics in Mn-doped SrTiO3 ceramics. Phys. Rev. B. 2006; 73(10):104113-7. https://doi.org/10.1103/PhysRevB.73.104113
53. Verma A., Raghavan S., Stemmer S., Jena D. Ferroelectric transition in compressively strained SrTiO3 thin films. Appl. Phys. Lett. 2015; 107(19):192908. https://doi.org/10.1063/1.4935592
54. Kittel C. Introduction to Solid State Physics. 7th ed. 1975. New York: Wiley, 1975. 688 р.
55. Tikhomirov O., Jiang H., Levy J. Local ferroelectricity in SrTiO3 thin films. Phys. Rev. Lett. 2002; 89(14):147601-4. http://dx.doi.org/10.1103/PhysRevLett.89.147601
56. Khaber L., Beniaiche A., Hachemi A. Electronic and optical properties of SrTiO3 under pressure effect: Ab initio study. Solid State Commun. 2014; 189:32-37. https://doi.org/10.1016/j.ssc.2014.03.018
57. Kumar A.S., Suresh P., Kumar M.M., Srikanth H., Post M.L., Sahner K., Moos R., Srinath S. Magnetic and ferroelectric properties of Fe doped SrTiO3-δ films. J. Phys. Conf. Ser. 2010; 200(9):092010-4. https://doi.org/10.1088/1742-6596/200/9/092010
58. Verma A., Raghavan S., Stemmer S., Jena D. Ferroelectric transition in compressively strained SrTiO3 thin films. Appl. Phys. Lett. 2015; 107(19):192908. https://doi.org/10.1063/1.4935592
59. Valdmanis J., Mourou G. Subpicosecond electrooptic sampling: Principles and applications. IEEE J.Quantum Electron. 1986; 22(1):69-78. https://doi.org/10.1109/JQE.1986.1072867
60. Tikhomirov O., Jiang H., Levy J. Local ferroelectricity in SrTiO3 thin films. Phys. Rev. Lett. 2002; 89(14):147601-4. http://dx.doi.org/10.1103/PhysRevLett.89.147601
61. Nahata A., Auston D.H., Heinz T.F., Wu C. Coherent detection of freely propagating terahertz radiation by electro-optic sampling. Appl. Phys. Lett. 1996; 68(2):150-152. https://doi.org/10.1063/1.116130
62. Kumar A.S., Suresh P., Kumar M.M., Srikanth H., Post M.L., Sahner K., Moos R., Srinath S. Magnetic and ferroelectric properties of Fe doped SrTiO3-δ films. J. Phys. Conf. Ser. 2010; 200(9):092010-4. https://doi.org/10.1088/1742-6596/200/9/092010
63. Jepsen P.U., Cooke D.G., Koch M. Terahertz spectroscopy and imaging – Modern techniques and applications. Laser Photon. Rev. 2011; 5(1):124-166. https://doi.org/10.1002/lpor.201000011
64. Valdmanis J., Mourou G. Subpicosecond electrooptic sampling: Principles and applications. IEEE J.Quantum Electron. 1986; 22(1):69-78. https://doi.org/10.1109/JQE.1986.1072867
65. Jepsen P.U., Fischer B.M. Dynamic range in terahertz time-domain transmission and reflection spectroscopy. Opt. Lett. 2005; 30(1):29-31. https://doi.org/10.1364/OL.30.000029
66. Nahata A., Auston D.H., Heinz T.F., Wu C. Coherent detection of freely propagating terahertz radiation by electro-optic sampling. Appl. Phys. Lett. 1996; 68(2):150-152. https://doi.org/10.1063/1.116130
67. Kuzmany H. The Dielectric Function. In: Solid-State Spectroscopy. Springer, 1998. P. 101-120. https://doi.org/10.1007/978-3-662-03594-8
68. Jepsen P.U., Cooke D.G., Koch M. Terahertz spectroscopy and imaging – Modern techniques and applications. Laser Photon. Rev. 2011; 5(1):124-166. https://doi.org/10.1002/lpor.201000011
69. Jepsen P.U., Fischer B.M. Dynamic range in terahertz time-domain transmission and reflection spectroscopy. Opt. Lett. 2005; 30(1):29-31. https://doi.org/10.1364/OL.30.000029
70. Kuzmany H. The Dielectric Function. In: Solid-State Spectroscopy. Springer, 1998. P. 101-120. https://doi.org/10.1007/978-3-662-03594-8
Supplementary files
|
1. Fig. 1. Schema of the experimental setup and the principle of electro-optical detection of THz radiation. Solid black lines indicate the polarization of the initially incident probing radiation | |
Subject | ||
Type | Research Instrument | |
View
(167KB)
|
Indexing metadata ▾ |
Review
For citations:
Bilyk V.R., Grishunin K.A. Complex Refractive Index of Strontium Titanate in the Terahertz Frequency Range. Russian Technological Journal. 2019;7(4):71-80. (In Russ.) https://doi.org/10.32362/2500-316X-2019-7-4-71-80