Preview

Russian Technological Journal

Advanced search

Features of Modeling of the Magnetorefractive Effect in Multilayered Metal Nanostructures

https://doi.org/10.32362/2500-316X-2019-7-3-59-68

Abstract

The magnetorefractive effect (MRE) is important and interesting from both fundamental and practical points of view. This effect consists in a change in the reflection coefficient or the passage of an electromagnetic wave from magnetized structures with magnetoresistance effects. It can be giant, tunnel and colossal magnetoresistance depending on the type of structure. MRE is most clearly manifested in the IR region of the spectrum and can reach tens of percent. It is possible to show its unambiguous dependence on the magnitude of the magnetoresistance. This article discusses the features of MRE in multilayer metal nanostructures with giant magnetoresistance. The MRE simulation is carried out using a model that relates this effect to magnetoresistance, as well as in the framework of the model taking into account spin-dependent scattering. The last model in earlier works allowed describing a number of experimental data well qualitatively and in some places quantitatively. In this paper, taking into account the frequency dependence of the resistance allowed us to improve the first model, which allowed us to obtain a good qualitative and quantitative description of the effect value – this is a fundamentally new result. The article highlighted the key opportunity for the application of magnetorefractive effect as a contactless method to study nanostructures, a method of nondestructive testing of all electronic components. A comparison with experimental data is also made. A good description is demonstrated in the framework of the two models considered, which can effectively describe the relationship between MRE and magnetoresistance.

About the Authors

A. A. Mokrushina
MIREA – Russian Technological University
Russian Federation

Master Student of the Chair of Nanoelectronics, Physics and Technology Institute

78, Vernadskogo pr., Moscow 119454, Russia



A. N. Yurasov
MIREA – Russian Technological University
Russian Federation

D.Sc. (Physics and Mathematics), Docent, Professor of the Chair of Nanoelectronics, Physics and Technology Institute

78, Vernadskogo pr., Moscow 119454, Russia



References

1. N.G., Gan’shina E.A., Granovsky A.B. Giant magnetotransmission and magnetoreflection

2. Gorokhovsky А.V. Composite Nanomaterials. Saratov: SGTU Publ. (Saratov State

3. Technical University Publ.), 2008. 68 p. (in Russ.)

4. in ferromagnetic materials. J. Magn. Magn. Mater. 2015; 383:104-109. DOI: 10.1016/j.

5. Reig C., Cardoso de Freitas S., Mukhopadhyay S.C. Giant Magnetoresistance (GMR) Sensors. From Basis to State-of the-Art Applications. In Series: Smart Sensors, Measurement and Instrumentation. Volume 6. Springer-Verlag, Berlin, Heidelberg, 2013. 301 р.

6. jmmm.2014.11.080

7. Tkacheva V.R. Nanocomposites – the future of mechanical engineering. Tekhnika.

8. Lobov I.D., Kirilova M.M., Makhnev A.A., Romashev L.N., Ustinov V.V. Parameters

9. Tekhnologii. Inzheneriya (Equipment. Technology. Engineering). 2016; (1):37-40. (in Russ.)

10. of Fe/Cr interfacial electron scattering from infrared magnetoreflection. Phys. Rev. B. 2010; 81: 134436-6. DOI: 10.1103/PhysRevB.81.134436

11. Jacquet J.C., Valet T. In: Magnetic ultrathin films, multilayers and surfaces. MRS Symp. Proc. 384. 1995. P. 477.

12. Bannikova N.S., Milyaev M.A., Naumova L.I., Proglyado V.V., Krinitsina T.P., Kamenskii I.Y., Ustinov V.V. Giant magnetoresistance of CoFe/Cu superlattices with the (Ni80Fe20)60Cr40 buffer layer. The Physics of Metals and Metallography. 2015; 116(10):987-992.

13. Granovsky A.B., Ganshina E.A., Yurasov A.N. [et al.] Magnetorefractive effect in nanostructures, manganites, and magnetophotonic crystals. Radiotekhnika i elektronika (Radio Engineering and Electronics). 2007; 52(9):1152-1159. (in Russ.)

14. Yurasov A.N. Magnetorefractive effect as a contactless method for the study of functional materials. Materialovedenie (Materials Science). 2014; (6):32-38. (in Russ.)

15. Yurasov A.N., Telegin A.V., Bannikova N.S., Miliaev M.A., Sukhorukov Yu.P., Features of the magnetorefractive effect in a multilayer metal nanostructure [CoFe/Cu]n. Fizika tverdogo tela (Semiconductors/Physics of the Solid State). 2018; 60(2):276-282. (in Russ.)

16. Uran S., Grimsditch M., Fullerton E.E., Bader S.D. Infrared spectra of giant

17. Mayevsky V.M. PMM. 59. 1985. P.213. Theory of magnetooptical effects in multilayer systems with an arbitrary orientation of magnetization. Fizika metallov i materialovedeniye (The Physics of Metals and Metallography). 1985; 5(2):213-219. (in Russ.)

18. magnetoresistance Fe/Cr/Fe trilayers. Phys. Rev. B. 1998; 57(5):2705-4. DOI: 10.1103/PhysRevB.57.2705

19. Yurasov A.N., Telegin A.V., Sukhorukov Yu.P. Model of the magnetorefractive effect in manganites within the effective medium theory. Physics of the Solid State. 2016; 58(4):674-677.

20. Kravets V.G., Bozec D., Matthew J.A.D., Thompson S.M., Menard H., Horn A.B.,

21. Kravets A.F. Correlation between the magnetorefractive effect, giant magnetoresistance, and optical properties of Co-Ag granular magnetic films. Phys. Rev. B. 2002; 65(5):054415-9. DOI: 10.1103/PhysRevB.65.054415

22. Granovskiy A., Gushhin V., Bykov I., Kozlov А., Kobayashi N., Ohnuma S., Masumoto T., Inoue M. Giant magnetorefractive effect in magnetic granular CoFe-MgF alloys. Semiconductors/Physics of the Solid State. 2003; 45(5):911-913.

23. Granovsky A.B., Sukhorukov Yu.P., Gan’shina E.A., Telegin A.V. Magnetorefractive

24. Effect in Magnetoresistive Materials. In: Springer Series in Materials Science. Magnetophotonics. From Theory to Applications. V. 178 / ed. by M. Inoue, M. Levy, A.V. Baryshev. Berlin, Heidelberg: Springer, 2013. P. 107–134.

25. Telegin A.V., Sukhorukov Yu.P., Loshkareva N.N., Mostovshchikova E.V., Bebenin

26. N.G., Gan’shina E.A., Granovsky A.B. Giant magnetotransmission and magnetoreflection

27. in ferromagnetic materials. J. Magn. Magn. Mater. 2015; 383:104-109. DOI: 10.1016/j.

28. jmmm.2014.11.080

29. Lobov I.D., Kirilova M.M., Makhnev A.A., Romashev L.N., Ustinov V.V. Parameters

30. of Fe/Cr interfacial electron scattering from infrared magnetoreflection. Phys. Rev. B. 2010; 81: 134436-6. DOI: 10.1103/PhysRevB.81.134436

31. Bannikova N.S., Milyaev M.A., Naumova L.I., Proglyado V.V., Krinitsina T.P., Kamenskii I.Y., Ustinov V.V. Giant magnetoresistance of CoFe/Cu superlattices with the (Ni80Fe20)60Cr40 buffer layer. The Physics of Metals and Metallography. 2015; 116(10):987-992.

32. Yurasov A.N., Telegin A.V., Bannikova N.S., Miliaev M.A., Sukhorukov Yu.P., Features of the magnetorefractive effect in a multilayer metal nanostructure [CoFe/Cu]n. Fizika tverdogo tela (Semiconductors/Physics of the Solid State). 2018; 60(2):276-282. (in Russ.)

33. Mayevsky V.M. PMM. 59. 1985. P.213. Theory of magnetooptical effects in multilayer systems with an arbitrary orientation of magnetization. Fizika metallov i materialovedeniye (The Physics of Metals and Metallography). 1985; 5(2):213-219. (in Russ.)

34. Yurasov A.N., Telegin A.V., Sukhorukov Yu.P. Model of the magnetorefractive effect in manganites within the effective medium theory. Physics of the Solid State. 2016; 58(4):674-677.


Supplementary files

1. Fig.1. Magnetorefractive effect spectra under light transmission (∆T/T)
Subject
Type Research Instrument
View (213KB)    
Indexing metadata ▾

Review

For citations:


Mokrushina A.A., Yurasov A.N. Features of Modeling of the Magnetorefractive Effect in Multilayered Metal Nanostructures. Russian Technological Journal. 2019;7(3):59-68. (In Russ.) https://doi.org/10.32362/2500-316X-2019-7-3-59-68

Views: 567


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3210 (Print)
ISSN 2500-316X (Online)